精英家教网 > 初中数学 > 题目详情

如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点CAB两点可构成直角三角形ABC,则称点CAB两点的勾股点.同样,点D也是AB两点的勾股点.

(1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出AB两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法).

(2)矩形ABCD中,AB=3,BC=1,直接写出边CDAB两点的勾股点的个数.

(3)如图2,矩形ABCD中,AB=12cm,BC=4cm,DM=8cm,AN=5cm.动点PD点出发沿着DC方向以1 cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s) ,点HMN两点的勾股点,且点H在直线l上.

①当t=4时,求PH的长.

②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).

 

 

 

(1)尺规作图正确,痕迹清楚.

(以线段AB为直径的圆与线段CD的交点,或线段CD的中点)……… (2分)

(2)4个.…………………………………………………………………… (4分)

(3)①当t=4时,PHPH=2或PH=3 .………………………(7分)

  ②当0≤t<4时,有2个勾股点;

             当t=4时,有3个勾股点;

当4<t<5时,有4个勾股点;

t=5时,有2个勾股点;

当5<t<8时,有4个勾股点;

t=8时,有2个勾股点.

综上所述,当0≤t<4或t=5或t=8时,有2个勾股点;

t=4时,有3个勾股点;

当4<t<5或5<t<8时,有4个勾股点. …………………… (11分)

解析:(1)以线段AB为直径的圆与线段CD的交点,或线段CD的中点就是A,B两点在CD上的勾股点;

(2)当矩形ABCD中,AB=3,BC=1时,此时以线段AB为直径的圆与线段CD的交点有两个,加上C、D两点,总共四个点;

(3)①如图,当t=4时,PM=8﹣4=4,QN=5﹣4=1,分三种情况:

当∠MHN=90°时,根据已知条件可以证明△PMH∽△QHN,然后利用相似三角形对应线段成比例即可求出PH;

当∠H''NM=90°时,设PH=x,那么H''Q=4﹣x,根据勾股定理得到PM2+PH''2=QN2+H''Q2+MN2,而MN==5,依次即可求出PH'';

当∠H'MN=90°时,根据勾股定理得到H'P2+PM2+QH'2+QN2=MN2,而H'Q=PH'+PQ=PH'+4,依次即可求出PH'.

②利用①的结果可以探究满足条件的点H的个数及相应t的取值范围.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.
(1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法);
精英家教网精英家教网
(2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A,B两点的勾股点的个数;
(3)如图2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上.求PH的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•镇江二模)如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.
(1)如图1,矩形ABCD中,AB=3,BC=1,请在边AB上作出C,D两点的所有勾股点(要求:尺规作图,保留作图痕迹,不要求写作法).
(2)如图2,矩形ABCD中,AB=12cm,BC=4cm,DM=8cm,AN=5cm.动点P从D点出发沿着DC方向以1cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s),点H为M,N两点的勾股点,且点H在直线l上.
①当t=4、t=5时,直接写出点H的个数.
②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•崇安区一模)如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.

(1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法).
(2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A,B两点的勾股点的个数.
(3)如图2,矩形ABCD中,AB=12cm,BC=4 cm,DM=8 cm,AN=5 cm.动点P从D点出发沿着DC方向以1 cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s),点H为M,N两点的勾股点,且点H在直线l上.
①当t=4时,求PH的长.
②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A、B两点可构成直角三角形ABC,则称点C为A、B两点的勾股点.同样,点D也是A、B两点的勾股点.

(1)在矩形ABCD中,AB=12,BC=6,边CD上A,B两点的勾股点的个数为
3
3
个;
(2)如图1,矩形ABCD中,AB=12,BC=6,DP=4,DM=8,AN=5.过点P作直线l平行于BC,点H为M、N两点的勾股点,且点H在直线l上,求PH的长;
(3)如图2,矩形ABCD中,AB=12,BC=6,将纸片折叠,折痕分别与CD、AB交于点F、G,若A、E两点的勾股点为BC边的中点M,求折痕FG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.

1.如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法);

2.矩形ABCD中,AB=3,BC=1,直接写出边CD上A, B两点的勾股点的个数;

3.如图2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上.求PH的长

 

查看答案和解析>>

同步练习册答案