精英家教网 > 初中数学 > 题目详情
如图,在一边靠墙(墙足够长)用120m篱笆围成两间相等的矩形鸡舍,要使鸡舍的总面积最大,则每间鸡舍的长与宽分别是______m、______m.
设矩形宽为y(0<y<30),则长为(120-3y),
所以矩形面积S=y(120-3y)=-3y 2+120y.(0<y<30),
∵0<y<30,
∴y=-
120
2×(-3)
=20 米时,鸡舍的总面积最大,
此时宽为20米,长为30米.
答:当矩形的长为30米,宽为20米时,鸡场面积最大.
故答案为:30,20.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,二次函数y1=mx2+(m-3)x-3(m>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A的坐标;
(2)当∠ABC=45°时,求m的值;
(3)已知一次函数y2=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=-mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B、C在x轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内.
(1)求二次函数的解析式;
(2)设点A的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数解析式,并求出自变量x的取值范围;
(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.
(4)求出当x为何值时P有最大值?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3)
(1)求抛物线的对称轴及k的值;
(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;
(3)点M是抛物线上的一动点,且在第三象限.
①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;
②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A,B两点,A在B的左侧,A坐标为(-1,0)与y轴交于点C(0,3)△ABC的面积为6.
(1)求抛物线的解析式;
(2)抛物线的对称轴与直线BC相交于点M,点N为x轴上一点,当以M,N,B为顶点的三角形与△ABC相似时,请你求出BN的长度;
(3)设抛物线的顶点为D在线段BC上方的抛物线上是否存在点P使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,中国首个空间实验室“天宫一号”于2011年9月29日成功发射.某科技实验小组也自行设计了火箭,经测试,该种火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h=-t2+10t-15表示,经过______s,火箭达到它的最高点10米处.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系中,横坐标与纵坐标都是整数的点(x,y)称为整点,如果将二次函数y=x2+8x-
39
4
的图象与x轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有______个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某同学在探究二次函数图象时,作直线y=m平行于x轴,交二次函数y=x2的图象于A、B两点,作AC、BD分别垂直于x轴,发现四边形ABCD是正方形.
(1)求m的值及A、B两点的坐标;
(2)如图所示,将抛物线“y=x2”改为“y=x2-2x+2”,直线CD经过抛物线的顶点P与x轴平行,其它关系不变,求m的值及A、B两点的坐标.
(3)如图所示,将图中的改为“y=ax2+bx+c(a>0),其它关系不变,请直接写出m的值及A、B两点的坐标(用含有a、b、c的代数式表示)
[提示:抛物线y=ax2+bx+c的顶点坐标为(-
b
2a
4ac-b2
4a
),对称轴为x=-
b
2a
].

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+2mx-m2-m+3
(1)证明抛物线顶点一定在直线y=-x+3上;
(2)若抛物线与x轴交于M、N两点,当OM•ON=3,且OM≠ON时,求抛物线的解析式;
(3)若(2)中所求抛物线顶点为C,与y轴交点在原点上方,抛物线的对称轴与x轴交于点B,直线y=-x+3与x轴交于点A.点P为抛物线对称轴上一动点,过点P作PD⊥AC,垂足D在线段AC上.试问:是否存在点P,使S△PAD=
1
4
S△ABC?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案