精英家教网 > 初中数学 > 题目详情

已知正方形内一点到正方形各边的距离分别为1,2,5,6,则此正方形的边长为


  1. A.
    5
  2. B.
    6
  3. C.
    7
  4. D.
    8
C
分析:结合题意,根据正方形的四边都相等,可直接得正方形的边长.
解答:∵正方形内一点到正方形各边的距离分别为1,2,5,6,
∴1+6=2+5=7,
即此正方形的边长为7.
故选C.
点评:本题考查了正方形的性质,属于基础题型.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ARP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AC•h,∴r1+r2=h(定值).
(1)理解与应用:
如图,在边长为3的正方形ABCD中,点E为对角线BD上的一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+FN的长.
(2)类比与推理:
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:
已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).
(3)拓展与延伸:
若正n边形A1A2…An,内部任意一点P到各边的距离为r1r2…rn,请问r1+r2+…+rn是否为定值?如果是,请合理猜测出这个定值.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•德城区二模)阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AB•h,∴r1+r2=h
(1)理解与应用
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在    三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,试证明:r1+r2+r3=
3

(2)类比与推理
边长为2的正方形内任意一点到各边的距离的和等于
4
4

(3)拓展与延伸
若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为r1,r2,…rn,请问r1+r2+…rn是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值.

查看答案和解析>>

科目:初中数学 来源:2012届浙江省丽水市青田县中考模拟数学试卷(带解析) 题型:解答题

阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两 腰的距离分别为,腰上的高为h,连结AP,则,即: ,(1)理解与应用
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在   三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为,试证明:.

(2)类比与推理
边长为2的正方形内任意一点到各边的距离的和等于        
(3)拓展与延伸
若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为,请问是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值。

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省丽水市青田县中考模拟数学试卷(解析版) 题型:解答题

阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两  腰的距离分别为,腰上的高为h,连结AP,则,即: ,(1)理解与应用

如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在    三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为,试证明:.

(2)类比与推理

边长为2的正方形内任意一点到各边的距离的和等于        

(3)拓展与延伸

若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为,请问是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值。

              

 

查看答案和解析>>

科目:初中数学 来源:2013年四川省内江市全安中学中考数学一模试卷(解析版) 题型:解答题

阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ARP+S△ACP=S△ABC,即:AB•r1+AC•r2=AC•h,∴r1+r2=h(定值).
(1)理解与应用:
如图,在边长为3的正方形ABCD中,点E为对角线BD上的一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+FN的长.
(2)类比与推理:
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:
已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).
(3)拓展与延伸:
若正n边形A1A2…An,内部任意一点P到各边的距离为r1r2…rn,请问r1+r2+…+rn是否为定值?如果是,请合理猜测出这个定值.

查看答案和解析>>

同步练习册答案