精英家教网 > 初中数学 > 题目详情
9.学校为了考察我校七年级同学的视力情况,从七年级的10个班共540名学生中,每班抽取了8名进行分析,在这个问题中总体是七年级540名学生的视力情况,样本容量是80.

分析 总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.

解答 解:从七年级的10个班共540名学生中,每班抽取了8名进行分析,在这个问题中总体是七年级540名学生的视力情况,样本容量是80,
故答案为:七年级540名学生的视力情况,80.

点评 此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.将下列多项式分解因式:4x3y-16xy3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若3×92n×27n=322,则n=3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.一个多边形的内角和是1800°,这个多边形是十二 边形,它的外角和是360°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.Rt△ABC中,∠C=90°,AC=6,BC=8,如果以点C为圆心,r为半径,且⊙C与斜边AB仅有一个公共点,那么半径r的取值范围是r=4.8或6<r≤8.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,正方形ABCD的顶点C在直线a上,且点B,D到a的距离分别是1,2.则这个正方形的面积是5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.阅读下面资料:
$\frac{1}{1+\sqrt{2}}$=$\frac{1×(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1; 
 $\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$;        
$\frac{1}{\sqrt{5}+2}$=$\frac{\sqrt{5}-2}{(\sqrt{5}+2)(\sqrt{5}-2)}$=$\sqrt{5}$-2.
试求:(1)$\frac{1}{\sqrt{7}+\sqrt{6}}$的值;
(2)$\frac{1}{3\sqrt{2}+\sqrt{17}}$的值;
(3)($\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+…+$\frac{1}{\sqrt{2008}+\sqrt{2009}}$+$\frac{1}{\sqrt{2009}+\sqrt{2010}}$)•(1+$\sqrt{2010}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.在各个内角都相等的多边形中,一个内角是一个外角的4倍,则这个多边形是10边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.嘉淇同学家的饮水机中原有水的温度为20℃,其工作过程如图所示,在一个由20℃加热到100℃再降温到20℃的过程中,水温记作y(℃),从开始加热起时间变化了x(分钟),加热过程中,y与x满足一次函数关系,水温下降过程中,y与x成反比例,当x=20时,y=40.
(1)写出饮水机水温的下降过程中y与x的函数关系,并求出x为何值时,y=100;
(2)求加热过程中y与x之间的函数关系;
(3)求当x为何值时,y=80.
问题解决
若嘉淇同学上午八点将饮水机通电开机后即外出散步,预计九点前回到家中,若嘉淇想喝到不低于50℃的水,直接写出外出时间m(分钟)的取值范围.

查看答案和解析>>

同步练习册答案