精英家教网 > 初中数学 > 题目详情
24、已知:梯形ABCD中,AB∥CD,E为DA的中点,且BC=DC+AB.求证:BE⊥EC.
分析:延长CE交BA的延长线于F.根据AAS证明△DCE≌△AFE,则DC=AF,EF=EC;结合已知BC=DC+AB,得BC=BF,根据等腰三角形的三线合一即可证明.
解答:证明:延长CE交BA的延长线于F.
∵AB∥CD,
∴∠AFE=∠DCE,∠FAE=∠D.
又E为DA的中点,
∴△DCE≌△AFE.
∴DC=AF,EF=EC.
∵BC=DC+AB,BF=AF+AB,
∴BC=BF.
∴BE⊥EC.
点评:此题综合运用了全等三角形的判定以及性质、等腰三角形的三线合一.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知等腰梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于点O.请在图中找出一对全等的三角形,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=DC=
12
AB,E是AB的中点.
(1)求证:四边形AECD是正方形;
(2)求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知等腰梯形ABCD中,AD∥BC,BD⊥DC,∠DBC=
12
∠ABC.若梯形的周长为40,求梯形的中位线.

查看答案和解析>>

科目:初中数学 来源: 题型:

11、已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在梯形ABCD中,DC∥AB,AD=BC,∠A=60°,BD平分∠ABC,若AD=1,则对角线BD的长是(  )

查看答案和解析>>

同步练习册答案