精英家教网 > 初中数学 > 题目详情
精英家教网如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.
(1)求证:∠B与∠AHD互补;
(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.
分析:(1)在AB上取一点M,使得AM=AH,连接DM,则利用SAS可得出△AHD≌△AMD,从而得出HD=MD=DB,即有∠DMB=∠B,通过这样的转化可证明∠B与∠AHD互补.
(2)由(1)的结论中得出的∠AHD=∠AMD,结合三角形的外角可得出∠DGM=∠GDM,可将HD转化为MG,从而在线段AG上可解决问题.
解答:精英家教网证明:(1)在AB上取一点M,使得AM=AH,连接DM,
AH=AM
∠CAD=∠BAD
AD=AD

∴△AHD≌△AMD,
∴HD=MD,∠AHD=∠AMD,
∵HD=DB,
∴DB=MD,
∴∠DMB=∠B,
∵∠AMD+∠DMB=180°,
∴∠AHD+∠B=180°,
即∠B与∠AHD互补.

(2)由(1)∠AHD=∠AMD,HD=MD,∠AHD+∠B=180°,
∵∠B+2∠DGA=180°,∠AHD=2∠DGA,
∴∠AMD=2∠DGM,
又∵∠AMD=∠DGM+∠GDM,
∴2∠DGM=∠DGM+∠GDM,即∠DGM=∠GDM,
∴MD=MG,
∴HD=MG,
∵AG=AM+MG,
∴AG=AH+HD.
点评:本题考查了全等三角形的判定及性质,结合了等腰三角形的知识,解决这两问的关键都是通过全等图形的对应边相等、对应角相等,将题目涉及的角或边进行转化.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案