精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中xOy中,已知点A(0,1),以OA为边在右侧作等边三角形OAA1 , 再过点A1作x轴的垂线,垂足为点O1 , 以O1A1为边在右侧作等边三角形O1A1A2;…按此规律继续作下去,得到等边三角形O2016A2016A2017 , 则点A2017的纵坐标为( )

A.( 2017
B.( 2016
C.( 2015
D.( 2014

【答案】A
【解析】解:∵三角形OAA1是等边三角形,

∴OA1=OA=1,∠AOA1=60°,

∴∠O1OA1=30°.

在直角△O1OA1中,∵∠OO1A1=90°,∠O1OA1=30°,

∴O1A1= OA1= ,即点A1的纵坐标为

同理,O2A2= O1A2=( 2,O3A3= O2A3=( 3

即点A2的纵坐标为( 2

点A3的纵坐标为( 3

∴点A2017的纵坐标为( 2017

故选A.

【考点精析】利用数与式的规律对题目进行判断即可得到答案,需要熟知先从图形上寻找规律,然后验证规律,应用规律,即数形结合寻找规律.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ABCD,BCCD,E是AD的中点,连结BE并延长交CD的延长线于点F.

(1)请连结AF、BD,试判断四边形ABDF是何种特殊四边形,并说明理由.

(2)若AB=4,BC=5,CD=6,求BCF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小东设计的“作边上的高线”的尺规作图过程.

已知:.

求作:边上的高线.

作法:如图,

①以点为圆心,的长为半径作弧,以点为圆心,的长为半径作弧,两弧在下方交于点

②连接于点.

所以线段边上的高线.

根据小东设计的尺规作图过程,

(1)使用直尺和圆规,补全图形;(保留作图痕迹)

(2)完成下面的证明.

证明:∵   

∴点分别在线段的垂直平分线上(  )(填推理的依据).

垂直平分线段.

∴线段边上的高线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)阅读思考:

小迪在学习过程中,发现数轴上两点间的距离可以用表示这两点数的差来表示,探索过程如下:

如图1所示,线段ABBCCD的长度可表示为:AB341BC54﹣(﹣1),CD3=(﹣1)﹣(﹣4),于是他归纳出这样的结论:如果点A表示的数为a,点B表示的数为b,当ba时,ABba(较大数﹣较小数).

2)尝试应用:

①如图2所示,计算:OE   EF   

②把一条数轴在数m处对折,使表示﹣192019两数的点恰好互相重合,则m   

3)问题解决:

①如图3所示,点P表示数x,点M表示数﹣2,点N表示数2x+8,且MN4PM,求出点P和点N分别表示的数;

②在上述①的条件下,是否存在点Q,使PQ+QN3QM?若存在,请直接写出点Q所表示的数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,点分别在边上,相交于点,如果已知,那么还不能判定,补充下列一个条件后,仍无法判定的是(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,D是边AC上一点,连接BD,使∠A=2∠1,点E是BC上的一点,以BE为直径的⊙O经过点D.

(1)求证:AC是⊙O的切线;
(2)若∠A=60°,⊙O的半径为2,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农户以1500元/亩的单价承包了15亩地种植板栗,每亩种植80株优质板栗嫁接苗,购买嫁接苗,购买价格为5元/株,且每亩地的管理费用为800元,一年下来喜获丰收平均每亩板栗产量为600kg,已知当地板栗的批发和;零售价格分别如下表所示:

销售方式

批发

零售

售价(元/kg)

10

14

通过市场调研发现,批发与零售的总销量只能达到总产量的70%,其中零售量不高于总销售量的40%,经多方协调当地食品加工厂承诺以7元/kg的价格收购该农户余下的板栗,设板栗全部售出后的总利润为y元,其中零售x kg.

(1)求y与x之间的函数关系

(2)求该农户所收获的最大利润

(总利润=总销售额-总承包费用-购买板栗苗的费用-总管理费用)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是

查看答案和解析>>

同步练习册答案