精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,则下列结论正确的是
 

①AE⊥AF;②EF:AF=
2
:1;③AF2=FH•FE;④FB:FC=HB:EC.
分析:由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.
解答:解:由题意知,△AFB≌△AED
∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.
∴AE⊥AF,故此选项①正确;
∴△AEF是等腰直角三角形,有EF:AF=
2
:1,故此选项②正确;
∵△AEF与△AHF不相似,
∴AF2=FH•FE不正确.故此选项③错误,
∵HB∥EC,
∴△FBH∽△FCE,
∴FB:FC=HB:EC,故此选项④正确.
故选:①②④.
点评:此题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.
(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.
(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边长是4,E是AB的中点,延长BC到点F使CF=AE.
(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.
(2)连接EF,求△DEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•门头沟区一模)阅读下面材料:
小伟遇到这样一个问题:如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,∠EAF=45°,连接EF,求证:DE+BF=EF.

小伟是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是将△ADE绕点A顺时针旋转90°得到△ABG(如图2),此时GF即是DE+BF.
请回答:在图2中,∠GAF的度数是
45°
45°

参考小伟得到的结论和思考问题的方法,解决下列问题:
(1)如图3,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,若∠BAE=45°,DE=4,则BE=
58
7
58
7

(2)如图4,在平面直角坐标系xOy中,点B是x轴上一动点,且点A(-3,2),连接AB和AO,并以AB为边向上作正方形ABCD,若C(x,y),试用含x的代数式表示y,则y=
x+1
x+1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,则下列结论正确的是________.
①AE⊥AF;②EF:AF=数学公式:1;③AF2=FH•FE;④FB:FC=HB:EC.

查看答案和解析>>

同步练习册答案