精英家教网 > 初中数学 > 题目详情
已知,如图,梯形ABCD中,AD∥BC,∠A=90°,∠C=45°,BE⊥DC于E,BC=5,AD:BC=2:5.求ED的长.

【答案】分析:首先作DF⊥BC于F,证明四边形ABFD是矩形,再由条件BC=5,AD:BC=2:5求出FC的长,然后用勾股定理求出DC和EC的长,即可得到DE的长.
解答:解:作DF⊥BC于F,
∵∠A=90°,AD∥BC,
∴四边形ABFD是矩形.
∵BC=5,AD:BC=2:5,
∴AD=BF=2,
∴FC=3.
在Rt△DFC中,
∵∠C=45°,
∴DC=
在Rt△BEC中,
∴EC=
∴DE=
点评:此题主要考查了矩形的判定方法和勾股定理的应用,解决问题的关键是利用勾股定理求出DC和EC的长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、已知:如图,梯形ABCD中,AD∥BC,AB=CD,对角线AC与BD相交于点O,则图中全等三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,梯形ABCD中,AD∥BC,∠DAB=120°,tanC=
3
6
,BC=18,AD=AB.求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知,如图,梯形ABCD中,AB∥CD,△COD与△AOB的周长比为1:2,则CD:AB=
1:2
,△COD与△BOC的面积比为
1:4

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,梯形ABCD中,AB∥CD,AD=BC,对角线AC、BD交于M,AB=2,CD=4,∠CMD=90°,求:BD的长.

查看答案和解析>>

科目:初中数学 来源:中华题王 数学 九年级上 (北师大版) 北师大版 题型:047

已知:如图,梯形AB-CD中,AB∠DC,E是BC的中点,AE、DC的延长线相交于点F,连结AC、BF.(1)求证:AB=CF;(2)四边形ABFC是什么四边形,并说明你的理由.

查看答案和解析>>

同步练习册答案