精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=﹣x2+4x+5与x轴的两个交点为A、B,与y轴交于点C.

(1)求A,B,C三点的坐标?
(2)求该二次函数的对称轴和顶点坐标?
(3)若坐标平面内的点M,使得以点M和三点A,B,C为顶点的四边形是平行四边形,求点M的坐标?(直接写出M的坐标)

【答案】
(1)

解:对应抛物线y=﹣x2+4x+5,令y=0,得﹣x2+4x+5=0,解得x=﹣1或5,

∴A(﹣1,0),B(5,0),

令x=0得y=5,

∴点C坐标(0,5),

∴A(﹣1,0),B(5,0),C(0,5)


(2)

解:∵y=﹣x2+4x+5=﹣(x2﹣4x)+5=﹣(x﹣2)2+9,

∴对称轴x=2,顶点坐标为(2,9)


(3)

解:如图,满足条件的点有三个,设M1(m,n).

∵四边形ABM1C是平行四边形,

∴BC与AM1互相平分,

= =

∴m=6,n=5,

∴M1(6,5),同理可得M2(4,﹣5),M3(﹣5,5).

∴满足条件的点M坐标为(6,5)或(4,﹣5)或(﹣5,5)


【解析】(1)对应抛物线分别令y=0,x=0解方程即可.(2)利用配方法即可解决问题.(3)满足条件的点有三个,设M1(m,n).由四边形ABM1C是平行四边形,推出BC与AM1互相平分,可得 = = ,解方程即可解决问题.
【考点精析】本题主要考查了二次函数的概念和二次函数的图象的相关知识点,需要掌握一般地,自变量x和因变量y之间存在如下关系:一般式:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数;二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】从长度分别为3,5,6,9的四条线段中任取三条,能组成三角形的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形的对称轴上找点,使得均为等腰三角形,则满足条件的点_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AECD交于点M,AEBC交于点N.

(1)求证:AE=CD;

(2)求证:AE⊥CD;

(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有   (请写序号,少选、错选均不得分).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法解下列方程时,配方正确的是(
A.方程x2﹣6x﹣5=0,可化为(x﹣3)2=4
B.方程y2﹣2y﹣2015=0,可化为(y﹣1)2=2015
C.方程a2+8a+9=0,可化为(a+4)2=25
D.方程2x2﹣6x﹣7=0,可化为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=x+1xy 轴分别交于点AB在直线 AB上截取BB1=AB,过点B1分别作xy 轴的垂线,垂足分别为点A1C1得到矩形OA1B1C1在直线 AB上截取B1B2= BB1,过点B2分别作xy 轴的垂线,垂足分别为点A2 C2得到矩形OA2B2C2在直线AB上截取B2B3= B1B2,过点B3分别作xy 轴的垂线,垂足分别为点A3C3得到矩形OA3B3C3;……;

则点B1的坐标是 ;第3个矩形OA3B3C3的面积是

n个矩形OAnBnCn的面积是 (用含n的式子表示,n是正整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,以RtABC的三边分别为直径作半圆,若RtABC三边长分别为3,x,5,则图中阴影部分的面积为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,求AG的长.

查看答案和解析>>

同步练习册答案