精英家教网 > 初中数学 > 题目详情

【题目】某经销商从市场得知如下信息:

某品牌空调扇

某品牌电风扇

进价(元/台)

700

100

售价(元/台)

900

160

他现有40000元资金可用来一次性购进该品牌空调扇和电风扇共100台,设该经销商购进空调扇台,空调扇和电风扇全部销售完后获得利润为.

1)求关于的函数解析式;

2)利用函数性质,说明该经销商如何进货可获利最大?最大利润是多少元?

【答案】1y=140x+60000x50);(2)购进该品牌空调扇和电风扇各50台时,经销商可获利最大,最大利润是13000元.

【解析】

1)根据利润y=(空调扇售价﹣空调扇进价)×空调扇的数量+(电风扇售价﹣电风扇进价)×电风扇的数量,根据总资金不超过40000元得出x的取值范围,列式整理即可;

2)利用yx的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.

1y=900700x+160100)×(100x=140x+6000,其中700x+100100x)≤40000,解得:x50,即y=140x+60000x50);

2)∵y=140x+6000k=1400,∴yx的增大而增大,∴x=50时,y取得最大值,此时100x=10050=50(台)

又∵140×50+6000=13000,∴选择购进该品牌空调扇和电风扇各50台时,经销商可获利最大,最大利润是13000元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标中,直角梯形OABC的边OCOA分别在x轴、y轴上,ABOC,∠AOC=90°,∠BCO=45°BC=12,点C的坐标为(-180)

1)求点B的坐标;

2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,∠OFE=45°,求直线DE的解析式;

3)求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l1y=x+6y轴交于点B,直线l2y=kx+6x轴交于点A,且直线l1与直线l2相交所形成的角中,其中一个角的度数是75°,则线段AB的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,点O为坐标原点,经过A(-26)的直线交x轴正半轴于点B,交y轴于点COB=OC,直线ADx轴负半轴于点D,若ABD的面积为27

1)求直线AD的解析式;

2)横坐标为m的点PAB上(不与点AB重合),过点Px轴的平行线交AD于点E,设PE的长为yy≠0),求ym之间的函数关系式并直接写出相应的m的取值范围;

3)在(2)的条件下,在x轴上是否存在点F,使PEF为等腰直角三角形?若存在求出点F的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,点A、B、Cx轴上,点D、Ey轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQy轴与抛物线交于点Q.

(1)求经过B、E、C三点的抛物线的解析式;

(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;

(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读与应用:

阅读1:ab为实数,且a>0,b>0,因为,所以,从而(当ab时取等号).

阅读2:函数(常数m>0,x>0),由阅读1结论可知: ,所以当时,函数的最小值为

阅读理解上述内容,解答下列问题:

问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为,求当x=__________时,周长的最小值为__________.

问题2:已知函数y1x+1(x>-1)与函数y2x2+2x+17(x>-1),当x=__________时, 的最小值为__________.

问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的三个顶点的坐标分别 A(-3,4)B(-5,2)C(-2,1)

(1)画出 △ABC关于y 轴的对称图形 △A1B1C1

(2)画出将△ABC 绕原点 O逆时针方向旋转90°得到的△A2B2C2

(3)求(2)中线段 OA扫过的图形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名采购员同去一家饲料公司购买两次饲料.两次饲料的价格分别为/千克和/千克(都为正数,且),两名采购员的购货方式不同,其中甲每次购买800千克;乙每次用去800元,而不管购买多少饲料.

1)用含的代数式表示甲、乙两名采购员两次购买饲料的平均单价各是多少?

2)若规定:谁两次购买饲料的平均单价低,谁的购货方式合算,请你判断甲、乙两名采购员购货方式哪个更合算?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是双曲线上的点,两点的横坐标分别是,线段的延长线交轴于点,若,则的值为(

A. 2 B. 3 C. 4 D. 6

查看答案和解析>>

同步练习册答案