分析 (1)根据切线的性质得出∠ABC=90°,进而得出∠A+∠C=90°,再由∠AOD=∠C,可得∠AOD+∠A=90°,即可证明;
(2)由垂径定理可得,D为AE中点,根据已知可利用锐角三角函数求出.
解答 (1)证明:∵BC是⊙O的切线,AB为⊙O的直径
∴∠ABC=90°,
∴∠A+∠C=90°,
又∵∠AOD=∠C,
∴∠AOD+∠A=90°,
∴∠ADO=90°,
∴OD⊥AC;
(2)解:∵OD⊥AE,O为圆心,
∴D为AE中点,AE=8,
∴AD=$\frac{1}{2}$AE=4,
又cosA=$\frac{4}{5}$,
∴OA=5,
∴AB=10.
点评 此题主要考查了圆的切线性质,及解直角三角形的知识和垂径定理的应用等知识,利用OD⊥AE,O为圆心,得出D为AE中点,再利用解直角三角形知识是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 16$\sqrt{3}$cm | B. | 8$\sqrt{3}$cm | C. | 4$\sqrt{3}$cm | D. | 16cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com