精英家教网 > 初中数学 > 题目详情

【题目】如图,为了计算河的宽度,某学习小组在河对岸选定一个目标点A,再在河岸的这一边选取点B和点C,使AB⊥BC,然后再选取点E,使E C⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=160 米,DC=80米,E C=49米,求A、B间的距离.

【答案】解:由题意可得:∠ABD=∠ECD=90°,∠ADB=∠EDC,
则△ABD∽△ECD,

=
解得:AB=98,
答:A、B间的距离为98m.
【解析】根据题意得出△ABD∽△ECD,进而利用相似三角形的性质得出AB的长.
【考点精析】利用相似三角形的应用对题目进行判断即可得到答案,需要熟知测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2﹣2x+1.
(1)求它的对称轴和顶点坐标;
(2)根据图象,确定当x>2时,y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线AB∥CD

1)如图1,直接写出∠ABE∠CDE∠BED之间的数量关系是   

2)如图2BFDF分别平分∠ABE∠CDE,那么∠BFD∠BED有怎样的数量关系?请说明理由.

3)如图3,点E在直线BD的右侧,BFDF仍平分∠ABE∠CDE,请直接写出∠BFD∠BED的数量关系   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某绿色无公害蔬菜基地有甲、乙两种植户,他们们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:

种植户

种植A类蔬菜面积(单位:亩)

种植B类蔬菜面积(单位:亩)

总收入(单位:元)

1

3

13500

2

2

13000

说明:不同种植户种植的同类蔬菜每亩平均收入相等

(1)求A、B两类蔬菜每亩平均收入各是多少元?

(2)今年甲、乙两种植户联合种植,计划合租50亩地用来种植A、B两类蔬菜,为了使总收入不低于16400元,问联合种植最多可以种植A类蔬菜多少亩?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,取点D与点E,使得AD=AE,BAE=CAD,连结BD与CE交于点O.求证:

(1)ABD≌△ACE

(2)OB=OC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子里装有红、黄、蓝三种颜色的球(除颜色以外,其余都相同),其中红球2个,黄球2个,从中随机摸出一个球是蓝色球的概率为
(1)求袋子里蓝色球的个数;
(2)甲、乙两人分别从袋中摸出一个球(不放回),求摸出的两个球中一个是红球一个是黄球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两组数据:3,m,2n,5与m,6,n的平均数都是6,若将这两组数据合并为一组数据,求这组新数据的中位数、众数、方差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知O为直线AB上一点,∠COE是直角,OF平分∠AOE.

(1)如图①,若∠COF=34°,则∠BOE=________;若∠COF=n°,则∠BOE=________;∠BOE与∠COF的数量关系为________________.

(2)当射线OE绕点O逆时针旋转到如图②的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.

(3)在图③中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC逆时针旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角∠A CA′的度数为

查看答案和解析>>

同步练习册答案