精英家教网 > 初中数学 > 题目详情
如图矩形纸片ABCD的边长AB=a,BC=b(a<b),点M、N分别为边AD、BC上两点(点A、C除外),连接MN.若对角线BD与MN交于点O,分别沿BM、DN折叠,折叠后点A、C恰好都落在点O处,并且得到的四边形是菱形BNDM.
请你探索a、b之间的数量关系,并求出当a=
3
时,菱形BNDM的面积.
分析:根据翻折的性质可得OB=AB,OD=CD,然后求出BD=2a,再根据勾股定理列式整理即可得到a、b的关系式;
先判断出∠ADB=30°,然后解直角三角形求出OM,再根据菱形的对角线互相平分求出MN的长,然后利用菱形的面积等于对角线乘积的一半列式计算即可得解.
解答:解:∵沿BM、DN折叠,折叠后点A、C恰好都落在点O处,
∴OB=AB,OD=CD,
∵矩形纸片的边长AB=a,
∴BD=OB+OD=2AB=2a,
在Rt△ABD中,根据勾股定理,AD2+AB2=BD2
即b2+a2=(2a)2
整理得,b=
3
a;

∵BD=2a,AB=a,
∴∠ADB=30°,
∴OM=
3
3
OD=
3
3
a,
在菱形BNDM中,MN=2OM=
2
3
3
a,
∴菱形BNDM的面积=
1
2
BD•MN=
1
2
×2a•
2
3
3
a=
2
3
3
a2
∵a=
3

∴菱形BNDM的面积=
2
3
3
×
3
2=2
3
点评:本题考查了矩形的性质,菱形的对角线互相垂直平分的性质,勾股定理的应用,翻折的性质,综合题,但难度不大,熟练掌握各图形的性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图矩形纸片ABCD,把它沿对角线折叠,会得到怎么样的图形呢?
精英家教网
(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图轨迹,只需画出其中一种情况)
(2)折叠后重合部分是什么图形?试说明理由.
(3)请选取一对你喜欢的数值作为矩形的长和宽,求出重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在矩形ABCD中.
(1)设矩形的面积为6,AD=y,AB=x(0<x≤6),写出y与x的函数关系,并在直角坐标系中画出此函数的图象.
(2)如图矩形纸片ABCD,AB=4,AD=3.折叠纸片使得AD边与对角线BD重合,折痕为DG,点A落在A′处,求△A′BG的面积与矩形ABCD的面积的比是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•温州模拟)如图矩形纸片ABCD中,AB=4,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为
16-4
7
3
16-4
7
3

查看答案和解析>>

科目:初中数学 来源:2008年初中毕业升学考试(山东潍坊卷)数学(解析版) 题型:解答题

如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.

(1)当折痕的另一端F在AB边上时,如图(1).求△EFG的面积.

(2)当折痕的另一端F在AD边上时,如图(2).证明四边形BGEF为菱形,并求出折痕GF的长. 

 

 

查看答案和解析>>

同步练习册答案