【题目】“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:
(1)a= , b= , m= ;
(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;
(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?
(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.
【答案】
(1)10;15;200
(2)解:线段BC所在直线的函数解析式为y=1500+200(x﹣15)=200x﹣1500;
线段OD所在的直线的函数解析式为y=120x.
联立两函数解析式成方程组,
,解得: ,
∴3000﹣2250=750(米).
答:小军在途中与爸爸第二次相遇时,距图书馆的距离是750米.
(3)解:根据题意得:|200x﹣1500﹣120x|=100,
解得:x1= =17.5,x2=20.
答:爸爸自第二次出发至到达图书馆前,17.5分钟时和20分钟时与小军相距100米.
(4)解:当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);
当线段OD过点C时,小军的速度为3000÷22.5= (米/分钟).
结合图形可知,当100<v< 时,小军在途中与爸爸恰好相遇两次(不包括家、图书馆两地).
【解析】解:(1)1500÷150=10(分钟), 10+5=15(分钟),
(3000﹣1500)÷(22.5﹣15)=200(米/分).
故答案为:10;15;200.
(1)根据时间=路程÷速度,即可求出a值,结合休息的时间为5分钟,即可得出b值,再根据速度=路程÷时间,即可求出m的值;(2)根据数量关系找出线段BC、OD所在直线的函数解析式,联立两函数解析式成方程组,通过解方程组求出交点的坐标,再用3000去减交点的纵坐标,即可得出结论;(3)根据(2)结论结合二者之间相距100米,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(4)分别求出当OD过点B、C时,小军的速度,结合图形,利用数形结合即可得出结论.
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系,O为坐标原点,点A(﹣1,0),点B(0, ).
(1)求∠BAO的度数;
(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1 , △BA′O的面积为S2 , S1与S2有何关系?为什么?
(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为3的正方形置于平面直角坐标系第一象限,使边落在轴的正半轴上,直线:经过点且与轴交于点.
(1)求点坐标;
(2)求的面积;
(3)若直线与轴交于点,在轴上是否存在点,使得是直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AC与BD相交于点O,∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点.
(1)如果图中线段都可画成有向线段,那么在这些有向线段所表示的向量中,与向量相等的向量是 ;
(2)设=,=,=.试用向量,或表示下列向量:= ;= .
(3)求作:.(请在原图上作图,不要求写作法,但要写出结论)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②中的一种).设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)
(1)在图①中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积为3平方米?
(2)在图②中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积S最大?最大面积是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com