精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),△AOB绕O点按逆时针方向旋转90°得到△COD.
(1)求C、D两点的坐标;
(2)求经过C、D、B三点的抛物线的解析式;
(3)设(2)中的抛物线的顶点为P,AB的中点为M,试判断△PMB是钝角三角形、直角三角形还是锐角三角形,并说明理由.
(1)由旋转的性质可知:OC=OA=2,OD=OB=4
∴C、D两点的坐标分别为C(-2,0)、D(0,4)

(2)设所求抛物线的解析式为y=ax2+bx+c,根据题意得
16a+4b+c=0
4a-2b+c=0
c=4

解得
a=-
1
2
b=1
c=4

∴所求抛物线的解析式为y=-
1
2
x2+x+4.

(3)答:△PMB是钝角三角形.
如图,PH是抛物线y=-
1
2
x2+x+4的对称轴,
求得M、P两点的坐标分别为M(2,1),P(1,
9
2
).
∴点M在PH右侧,
又∵∠PHB=90°
∴∠PMB>90°
∴△PMB是钝角三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2-kx+k-5.
(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;
(2)若此二次函数图象的对称轴为x=1,求它的解析式;
(3)若(2)中的二次函数的图象与x轴交于A、B,与y轴交于点C;D是第四象限函数图象上的点,且OD⊥BC于H,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知点A(8,0),sin∠ABO=
4
5
,抛物线经过点O、A,且顶点在△AOB的外接圆上,则此抛物线的解析式为(  )
A.y=-
1
2
x2+4x
B.y=-
1
8
x2+x
C.y=
1
2
x2-4x
或y=-
1
8
x2+x
D.y=-
1
2
x2+4x
或y=
1
8
x2-x

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

两个数相差左,设其中较大的一个数为x,那么它们的积y是如何随x的变化而变化的?你能分别用函数表达式、表格和图象表示这种变化吗?
(1)用函数表达式表示:y=______;
(左)用表格表示:
x
y
(3)用图象表示.
(4)根据以上三种表示方式回答下列问题:
①自变量x的取值范围是什么?
②图象的对称轴和顶点坐标分别是什么?
③如何描述y随x的变化而变化的情况?
④你是分别通过哪种表示方式回答上面三个问题的?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,抛物线y=ax2+bx+c与x轴相交于B(1,0)、C(4,0)两点,与y轴的正半轴相交于A点,过A、B、C三点的⊙P与y轴相切于点A.
(1)请求出点A坐标和⊙P的半径;
(2)请确定抛物线的解析式;
(3)M为y轴负半轴上的一个动点,直线MB交⊙P于点D.若△AOB与以A、B、D为顶点的三角形相似,求MB•MD的值.(先画出符合题意的示意图再求解).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一座抛物线型拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m.
(1)在如图所示的平面直角坐标系中,求出抛物线解析式;
(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m.求水面在正常水位基础上涨多少m时,就会影响过往船只?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是一座抛物线型拱桥,以桥基AB为x轴,AB的中垂线为y轴建立直角坐标系.已知桥基AB的跨度为60米,如果水位从AB处上升5米,就达到警戒线CD处,此时水面CD的宽为30
2
米,求抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,y轴是边长为2的等边△BAD的对称轴,x轴是等腰△BDC的对称轴.
(1)试求出经过点A、点B,且对称轴为直线x=1的抛物线的解析式;
(2)把△BDC沿着直线BD翻折后,得到△BDC'.
①问点C'是否在(1)中的抛物线上?
②设BC'交直线x=1于点Q.若点P是(1)中的抛物线上的一个动点,过点P作PT⊥直线x=1,垂足为T,问:在抛物线上是否存在着点P,使得以P、T、Q为顶点的三角形与△QDC'相似?若存在,写出所有符合上述条件的点P的横坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,用12米长的木方,做一个有一条横档的矩形窗子,为使透进的光线最多,选择窗子的长、宽各为______、______米.

查看答案和解析>>

同步练习册答案