在△ABC中, AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
【小题1】△ABC的面积为: .
【小题2】若△DEF三边的长分别为、2、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.
【小题3】利用第2小题解题方法完成下题:如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.
【小题1】
【小题2】
计算出正确结果S△DEF=3
【小题3】利用构图法或其他方法算出
S△PQR=
六边形ABCDEF的面积=62.
解析(1)画出格子后可以根据格子的面积很容易的算出三角形的面积,大矩形的面积减去矩形内除去所求三角形的面积即可.
(2)构造时取(1,3)(2,2)(1,4)即可.
(3)根据PRQ的长度取(1,3)(1,4)(2,3)在网格中画图,求出其面积.
解:(1)根据格子的数可以知道面积为S=3×3-1/21×2+1×3+2×3)=7/2
(2)画图为
计算出正确结果S△DEF=3;
3)利用构图法计算出S△PQR=11/2
△PQR、△BCR、△DEQ、△AFP的面积相等
计算出六边形花坛ABCDEF的面积为S正方形PRBA+S正方形RQDC+S正方形QPFE+4S△PQR=13+10+17+4×11/2=62
科目:初中数学 来源: 题型:
3 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com