精英家教网 > 初中数学 > 题目详情

如图:直线y=ax+b分别与x轴,y轴相交于A、B两点,与双曲线数学公式,(x>0)相交于点P,PC⊥x轴于点C,点A的坐标为(-4,0),点B的坐标为(0,2),PC=3.
(1)求双曲线对应的函数关系式;
(2)若点Q在双曲线上,且QH⊥x轴于点H,△QCH与△AOB相似,请求出点Q的坐标.

解:(1)∵点A的坐标为(-4,0),点B的坐标为(0,2),
设y1=kx+b,

解得:
故直线AB解析式为:y1=x+2,
∵PC⊥x轴,PC=3,
∴3=x+2,
解得:x=2,
故P(2,3),
则3=
解得k=6,
故双曲线的解析式为:y=

(2)根据Q点在双曲线上,设Q点的坐标为(m,),
由A,B点的坐标可得:BO=2,AO=4,CO=2,
当△QCH∽△BAO时,
=
=
解得:m1=1+,m2=1-<0(不合题意舍去),
==
故Q点的坐标为:(+1,);
当△QCH∽△ABO时,
=
=
解得:m1=-1<0(不合题意舍去),m2=3,
==2,
故Q点的坐标为:(3,2).
综上所述:Q点的坐标为:(+1,);(3,2).
分析:(1)根据两个函数的解析式及其与x轴的交点坐标和表示出P点的坐标根据三角形的面积k值从而求出双曲线的函数解析式.
(2)利用(1)我们可以求出△AOB各边的长,然后利用三角形相似求出Q点的坐标就可以.
点评:此题主要考查了反比例函数的综合试题以及用待定系数法求函数的解析式、函数图象中三角形面积的运用、相似三角形的判定等知识点.进行分类讨论得出Q点坐标是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

11、如图,直线y=ax+b经过点(-4,0),则不等式ax+b≥0的解集为
x≥-4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•安岳县模拟)如图:直线y=ax+b分别与x轴,y轴相交于A、B两点,与双曲线y=
kx
,(x>0)相交于点P,PC⊥x轴于点C,点A的坐标为(-4,0),点B的坐标为(0,2),PC=3.
(1)求双曲线对应的函数关系式;
(2)若点Q在双曲线上,且QH⊥x轴于点H,△QCH与△AOB相似,请求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大连一模)如图.直线y=ax+b与双曲线y=
k
x
相交于两点A(1,2),B(m,-4).
(1)求直线与双曲线的解析式;
(2)求不等式ax+b>
k
x
的解集(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y1=ax+b与直线y2=mx+n相交于点(2,3),则不等式ax+b>mx+n的解是(  )

查看答案和解析>>

同步练习册答案