A. | 4$\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 6 | D. | 2$\sqrt{5}$ |
分析 连接OE、OC,OC交EF于D,由圆周角定理得出$\widehat{AC}=\widehat{BC}$,如果连接OC交EF于D,根据垂径定理可知:OC必垂直平分EF.由MN是△ABC的中位线,根据三角形中位线定理可得:OD=CD=$\frac{1}{2}$OC=2.在Rt△OED中求出ED的长,即可得出EF的值.
解答 解:如图所示,
∵PC是∠APB的角平分线,
∴∠APC=∠CPB,
∴弧AC=弧BC;
∴AC=BC;
∵AB是直径,
∴∠ACB=90°.
即△ABC是等腰直角三角形.
连接OC,交EF于点D,则OC⊥AB;
∵MN是△ABC的中位线,
∴MN∥AB;
∴OC⊥EF,OD=$\frac{1}{2}$OC=2.
连接OE,根据勾股定理,得:DE=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∴EF=2ED=4$\sqrt{3}$.
故选:A.
点评 此题考查圆周角定理,垂径定理,三角形的中位线,综合运用了圆周角定理及其推论发现等腰直角三角形,再进一步根据等腰三角形的性质以及中位线定理,求得EF的弦心距,最后结合垂径定理和勾股定理求得弦长.
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 由3x-2=2x+2,得x=4 | B. | 由-$\frac{1}{3}x=\frac{2}{3}$,得x=2 | ||
C. | 由2x-3=3x,得x=3 | D. | 由3x-5=7,得3x=7-5 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5$\sqrt{3}$ | B. | 2$\sqrt{5}$ | C. | $\frac{24}{5}$ | D. | $\frac{48}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com