精英家教网 > 初中数学 > 题目详情
25、(1)已知:如图1,四边形ABCD内接于⊙O,延长BC至E.求证:∠A+∠BCD=180°,∠DCE=∠A.
(2)依已知条件和(1)中的结论:
①如图2,若点C在⊙O外,且A、C两点分别在直线BD的两侧.试确定∠A+∠BCD与180°的大小关系;
②如图3,若点C在⊙O内,且A、C两点分别在直线BD的两侧.试确定∠A+∠BCD与180°的大小关系.
分析:(1)连接AC,BD,由同弧所对的圆周角相等与四边形的内角和为360°,即可证得∠A+∠BCD=180°;又由同角的补角相等,求得∠DCE=∠A;
(2)根据圆的内接四边形的对角互补与三角形的外角的性质,即可证得结论.
解答:解:(1)

连接AC,BD,
则:∠1=∠4,∠2=∠7,∠3=∠6,∠5=∠8,
∴∠BAD+∠ABC+∠BCD+∠CDA=∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=2(∠1+∠2+∠5+∠6)=360°,
∴∠1+∠2+∠5+∠6=180°,
∴∠A+∠BCD=180°;
∵∠DCE+∠BCD=180°,
∴∠DCE=∠A;

(2)①
连接DE,
∵∠A+∠BED=180°,∠BDE>∠BCD,
∴∠A+∠BCD<180°;

延长DC交⊙O于点E,连接BE,
∵∠A+∠E=180°,∠BCD>∠E,
∴∠A+∠BCD>180°.
点评:此题考查了圆的内接四边形的对角互补的性质与证明,此题的图形变换比较多,所以要注意识图.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2007年5月17日我市荣获“国家卫生城市称号”.在“创卫”过程中,要在东西方向M、N两地之间修建一条道路.已知:如图C点周围180m范围内为文物保护区,在MN上点A处测得C在A的北偏东60°方向上,从A向东走500m到达B处精英家教网,测得C在B的北偏西45°方向上.
(1)NM是否穿过文物保护区?为什么?(参考数据:
3
≈1.732)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工作需要多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

11、已知,如图,正比例函数与反比例函数的图象相交于A、B两点,A点坐标为(2,1),分别以A、B为圆心的圆与x轴相切,则图中两个阴影部分面积的和为
π

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,∠1=∠2,
 
.求证:AB=AC.
(1)在横线上添加一个使命题的结论成立的条件;
(2)写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为
AD边上一动点(与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1,
(Ⅰ)求BC、AP1的长;
(Ⅱ)设AP=m,梯形PECD的面积为S,求S与m之间的函数关系式,写出自变量m的取值范围;
(Ⅲ)以点E为圆心作⊙E与x轴相切,探究并猜想:⊙P和⊙E有哪几种位置关系,并求出AP相应的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=-
3
3
x2-
2
3
3
x+
3
的图象与x轴分别交于A,B两点,与y轴交精英家教网于C点,⊙M经过原点O及点A、C,点D是劣弧
OA
上一动点(D点与A、O不重合).
(1)求抛物线的顶点E的坐标;
(2)求⊙M的面积;
(3)连CD交AO于点F,延长CD至G,使FG=2,试探究,当点D运动到何处时,直线GA与⊙M相切,并请说明理由.

查看答案和解析>>

同步练习册答案