精英家教网 > 初中数学 > 题目详情
我们学过因式分解的概念,在计算多项式的过程中,如果能适当地分解因式进行化简,会使得计算更为简单.我们为此引入质因数分解定理:每一个大于1的整数都能分解为质因数的乘积的形式,如果把质因数按照从小到大的顺序排在一起,相同因数的积写成幂的形式,那么这种分解方法是唯一的.请你学习例题的解法,完成问题的研究.
例:试求5746320819乘以125的值.
解:∵125=1000÷8
∴5769320819×125=5746320819000÷8=718290102375
答:由上知,5746320819×125=718290102375.
请根据例题,求一实数,使得它被10除余9,被9除余8,被8除余7,…,被2除余1.
分析:这个数加1可以被10,9,8,7,6,5,4,3,2整除,只需要求出10、9、8、7、6、5、4、3、2的最小公倍数减一即可.
解答:解:设这个实数是N.根据题意,可知,
这个自然数加1就可以被10,9,8,7,6,5,4,3,2整除,
则N就是10,9,8,7,6,5,4,3,2的最小公倍数减去1,
故N=3×3×2×2×2×7×5-1=2519.
点评:本题考查带余数的除法,难度较大,关键是掌握解答本题的解答步骤.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2013•椒江区一模)请仔细阅读下面两则材料,然后解决问题:
材料1:小学时我们学过,任何一个假分数都可以化为一个整数与一个真分数的和的形式,同样道理,任何一个分子次数不低于分母次数的分式都可以化为一个整式与另一个分式的和(或差)的形式,其中另一个分式的分子次数低于分母次数.
x2-2x-4
x-1
=
(x2-x)+(-x+1)+(-5)
x-1
=(x-1)-
5
x-1

如:对于式子2+
3
1+x2
,因为x2≥0,所以1+x2的最小值为1,所以
3
1+x2
的最大值为3,所以2+
3
1+x2
的最大值为5.根据上述材料,解决下列问题:问题1:把分式
4x2+8x+7
1
2
x2+x+1
 化为一个整式与另一个分式的和(或差)的形式,其中另一
4x2+8x+7
1
2
x2+x+1
个分式的分子次数低于分母次数.
问题2:当x的值变化时,求分式8-
2
(x+1)2+1
的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

请同学们注意观察周围生活环境中的一些标志性建筑或有代表意义的东西,如电视信号发射塔,北京2008年奥运会的会徽“中国印•舞动的北京”等等,然后用你学过或知道的平面图形拼出一个以体育这个概念为中心内容且具有象征意义的图案,并为这个图案注上相应的文字说明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我们学过因式分解的概念,在计算多项式的过程中,如果能适当地分解因式进行化简,会使得计算更为简单.我们为此引入质因数分解定理:每一个大于1的整数都能分解为质因数的乘积的形式,如果把质因数按照从小到大的顺序排在一起,相同因数的积写成幂的形式,那么这种分解方法是唯一的.请你学习例题的解法,完成问题的研究.
例:试求5746320819乘以125的值.
解:∵125=1000÷8
∴5769320819×125=5746320819000÷8=718290102375
答:由上知,5746320819×125=718290102375.
请根据例题,求一实数,使得它被10除余9,被9除余8,被8除余7,…,被2除余1.

查看答案和解析>>

科目:初中数学 来源:2013年湖南省中考数学模拟试卷(一)(解析版) 题型:解答题

我们学过因式分解的概念,在计算多项式的过程中,如果能适当地分解因式进行化简,会使得计算更为简单.我们为此引入质因数分解定理:每一个大于1的整数都能分解为质因数的乘积的形式,如果把质因数按照从小到大的顺序排在一起,相同因数的积写成幂的形式,那么这种分解方法是唯一的.请你学习例题的解法,完成问题的研究.
例:试求5746320819乘以125的值.
解:∵125=1000÷8
∴5769320819×125=5746320819000÷8=718290102375
答:由上知,5746320819×125=718290102375.
请根据例题,求一实数,使得它被10除余9,被9除余8,被8除余7,…,被2除余1.

查看答案和解析>>

同步练习册答案