【题目】如图,在矩形纸片ABCD中,AB=4,BC=4,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A'EF,连接A'C,A'D,则当△A'DC是以A'D为腰的等腰三角形时,FD的长是_____.
【答案】4﹣2或3
【解析】
存在两种情况:当A′D=DC,连接ED,勾股定理求得ED的长,可判断E,A′,D三点共线,根据勾股定理即可得到结论;当A′D=A′C,证明AEA′F是正方形,于是得到结论.
解:①当A′D=DC时,如图1,连接ED,
∵点E是AB的中点,AB=4,BC=4,四边形ABCD是矩形,
∴AD=BC=4,∠A=90°,
∴DE==6,
∵将△AEF沿EF所在直线翻折,得到△A'EF,
∴A′E=AE=2,
∵A′D=DC=AB=4,
∴DE=A′E+A′D=6,
∴点E,A′,D三点共线,
∵∠A=90°,
∴∠FA′E=∠FA′D=90°,
设AF=x,则A′F=x,FD=4-x,
在Rt△FA′D中,42+x2=(4-x)2,
解得:x=,
∴FD=3;
②当A′D=A′C时,如图2,
∵A′D=A′C,
∴点A′在线段CD的垂直平分线上,
∴点A′在线段AB的垂直平分线上,
∵点E是AB的中点,
∴EA′是AB的垂直平分线,
∴∠AEA′=90°,
∵将△AEF沿EF所在直线翻折,得到△A'EF,
∴∠A=∠EA′F=90°,AF=FA′,
∴四边形AEA′F是正方形,
∴AF=AE=2,
∴DF=4-2,
故答案为:4-2或3
.
科目:初中数学 来源: 题型:
【题目】红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理数据:
分数 人数 班级 | 60 | 70 | 80 | 90 | 100 |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
分析数据:
平均数 | 中位数 | 众数 | |
1班 | 83 | 80 | 80 |
2班 | 83 | ||
3班 | 80 | 80 |
根据以上信息回答下列问题:
(1)请直接写出表格中的值;
(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;
(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象经过点
,直线
与
轴交于点
为二次函数图象上任一点.
求这个二次函数的解析式;
若点
在直线
的上方,过
分别作
和
轴的垂线,交直线
于不同的两点
(
在
的左侧),求
周长的最大值;
是否存在点
使得
是以
为直角边的直角三角形?如果存在,直接写出点
的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2-2ax+c与x轴分别交于点A、B(点B在点A的右侧),与y轴交于点C,连接BC,点(,
a-3)在抛物线上.
(1)求c的值;
(2)已知点D与C关于原点O对称,作射线BD交抛物线于点E,若BD=DE,①求抛物线所对应的函数表达式 ;②过点B作BF⊥BC交抛物线的对称轴于点F,以点C为圆心,以的长为半径作⊙C,点T为⊙C上的一个动点,求
TB+TF的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B两船发出紧急求救信号,此时B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏东33°方向,同时又位于B船的北偏东78°方向.
(1)求∠ABC的度数;
(2)A船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).
(参考数据:≈1.414,
≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数
的图象与反比例函数
的图象相交于
,
两点,与
轴相交于点
,连接
,且
的面积为2.
(1)求反比例函数的表达式;
(2)将直线向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线
向下平移了几个单位长度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.
(1)当参加旅游的人数不超过10人时,人均收费为 元;
(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市计划印制一批宣传册该宣传册每本共页,由
两种彩页构成,已知
种彩页制版费
元/张,
种彩页制版费
元/张,该宣传册的制版费共计
元(注:彩页制版费与印数无关)
每本宣传册
两种彩页各有多少张;
据了解,
种彩页印刷费
元/张,
种彩页印刷费
元/张,这批宣传册的制版费与印刷费的和不超过
元如果按到该市展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:对于平面直角坐标系中的线段
和点
,在
中,当
边上的高为2时,称
为
的“等高点”,称此时
为
的“等高距离”.
(1)若点的坐标为(1,2),点
的坐标为(4,2),则在点
(1,0),
(
,4),
(0,3)中,
的“等高点”是点___;
(2)若(0,0),
=2,当
的“等高点”在
轴正半轴上且“等高距离”最小时,点
的坐标是__.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com