精英家教网 > 初中数学 > 题目详情

如图,平行四边形ABCD中,E是AD上的一点,且AE=数学公式AD,对角线AC,BD交于点O,EC交BD于F,BE交AC于G,如果平行四边形ABCD的面积为S,那么,△GEF的面积为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:过A作AM垂直于BC,交BC于点M,利用平行线间的距离相等得到三角形EBC中BC边上的高为AM,利用三角形的面积公式表示出三角形EBC的面积,利用平行四边形的面积公式表示出平行四边形ABCD的面积,得到三角形EBC的面积为平行四边形ABCD面积的一半,由平行四边形的对边相等且平行,得到AD与BC平行且相等,由两直线平行得到两对内错角相等,利用两对对应角相等的两三角形相似,得到三角形AEG与三角形BCG相似,三角形EFD与三角形BCF相似,由AE=AD,得到AE=BC,即AE:BC=1:3,由相似得比例得到EG:BG=1:3,根据三角形EFG与三角形BFG底边之比为1:3,高相等得到三角形EFG的面积与三角形BFG的面积之比为1:3,即三角形EFG的面积为BEF面积的,同理得到ED=AD=BC,即DE:BC=2:3,由相似得比例得到EF:FC=2:3,由三角形BEF与三角形CFB底边之比为2:3,高相等得到三角形BEF与三角形BCF面积之比为2:3,即三角形BEF面积为三角形EBC面积的,等量代换可得出三角形EFG为平行四边形面积的,即可得到正确的选项.
解答:过A作AM⊥BC于M,如图所示:

∵S△BEC=BC•AM,S?ABCD=BC•AM,
∴S△BEC=S?ABCD=S,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠EAG=∠BCG,∠AEG=∠CBG,
∴△AEG∽△CBG,又AE=AD=BC,
==
∴S△EFG=S△BGF
又S△EFG+S△BGF=S△BEF
∴S△EFG=S△BEF
∵AE=AD,AD=AE+ED,
∴ED=AD=BC,
同理得到△EFD∽△CFB,
==
∴S△BEF=S△BFC
又S△BEF+S△BFC=S△BEC
∴S△BEF=S△BEC=S,
∴S△EFG=S.
故选C
点评:此题考查了平行四边形的性质,相似三角形的判定与性质,利用了转化及等量代换的思想,灵活运用转化思想是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二精英家教网次方程x2-7x+12=0的两个根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E为x轴上的点,且S△AOE=
16
3
,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,平行四边形ABCD中,∠ABC的角平分线BE交AD于E点,AB=3,ED=1,则平行四边形ABCD的周长是
14

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=
5
,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转一定角度后,分别交BC、AD于点E、F.
精英家教网
(1)试说明在旋转过程中,线段AF与EC总保持相等;
(2)当旋转角为90°时,在图2中画出直线AC旋转后的位置并证明此时四边形ABEF是平行四边形;
(3)在直线AC旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.(图供画图或解释时使用)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平行四边形ABCD的两条对角线AC、BD相交于点O,AB=5,AC=6,DB=8,则四边形ABCD是的周长为
20
20

查看答案和解析>>

同步练习册答案