【题目】某商店经销一种成本为每千克元的水产品,据市场分析,若按每千克元销售,一个月能售出,销售单价每涨(或跌)元,月销售量就减少(或增加),解答以下问题:
(1)当销售单价定位每千克元时,计算月销售量和月销售利润;
(2)商店想在月销售成本不超过元的情况下,使得月销售利润达到元,销售单价应为多少?
(3)商店要使得月销售利润达到最大,销售单价应为多少?此时利润为多少?
【答案】(1)450千克,6750元;(2)销售单价应为元;(3)销售单价应为,此时利润元.
【解析】
(1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量即可求出题目的结果;
(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等式即可列出方程求解,再结合销售成本不超过元进行取舍即可;
(3)根据(2)中的相等关系列出函数解析式,化为顶点式即可求出答案.
500-10×(35-30)=450(千克),
(35-20)×450= 6750(元).
设应涨价x元,由题意得,
(30+x-20)(500-10x)=8000,
解得x=10或x=30.
当x=10时,20×[500-10×(40-30)]=8000(元),舍去;
当x=30时,20×[500-10×(60-30)]=4000(元).
∴销售单价应为元;
∵月销售利润
,
∴当时,,
答:商店要使得月销售利润达到最大,销售单价应为,此时利润元.
科目:初中数学 来源: 题型:
【题目】阅读理解:如图1,若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.
(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;
(2)性质探究:如图1,试在垂美四边形ABCD中探究AB2,CD2,AD2,BC2之间的关系,并说明理由;
(3)解决问题:如图3,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE、CE交BG于点N,交AB于点M.已知AC=,AB=2,求GE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(2,1)是正比例函数ykx(其中k0)和反比例函数y(其中t0)的图像在第一象限的交点,点B是这两个函数图像的另一个交点,点C是x轴上一点.
(1)求这两个函数的解析式并直接写出点B的坐标;
(2)求当ABC为等腰三角形时,点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将图1,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.
(1)如图2,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图2中画出折痕;
(2)如图3,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
(3)如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是 ;
(4)如果一个四边形一定能折成“叠加矩形”,那么它必须满足的条件是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设函数y=kx2+(3k+2)x+1,对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值为( )
A. 2 B. ﹣2 C. ﹣1 D. 0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,点从点出发沿射线移动,同时点从点出发沿线段的延长线移动,点,移动的速度相同,与相交于点.
(1)如图1,过点作,交于点,求证:;
(2)如图2,,当点移动到的中点时,求的长度;
(3)如图3,过点作于点.在点从点向点(点不与点,重合)移动的过程中,线段与的长度是否保持不变若保持不变,请求出与的长度和;若改变,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:
进价(元/只) | 售价(元/只) | |
甲种节能灯 | 30 | 40 |
甲种节能灯 | 35 | 50 |
(1)求幸福商场甲、乙两种节能灯各购进了多少只?
(2)全部售完100只节能灯后,商场共计获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校创客小组进行机器人跑步大赛,机器人小和小从同一地点同时出发,小在跑到1分钟的时候监控到程序有问题,随即开始进行远程调试,到3分钟的时候调试完毕并加速前进,最终率先到达终点,测控小组记录的两个机器人行进的路程与时间的关系如图所示,则以下结论正确的有_________ (填序号).
①两个机器人第一次相遇时间是在第2分钟;
②小每分钟跑50米;
③赛程总长200米;
④小到达终点的时候小距离终点还有20米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com