【题目】如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:
(1)在刚出发时,我公安快艇距走私船多少海里?
(2)计算走私船与公安艇的速度分别是多少?
(3)求出l1,l2的解析式.
(4)问6分钟时,走私船与我公安快艇相距多少海里?
【答案】(1)5海里;(2)走私船:1海里/分;公安快艇:1.5海里/分(3)y1=t+5 ;y2=;(4)2海里;
【解析】
(1)由图即可得出,我公安快艇距走私船的距离;
(2)根据路程除以时间即可求出速度;
(3)利用待定系数法即可求出一次函数的解析式;
(4)将t=6代入两个解析式求出各自路程,路程之差即为两艇之间的距离;
(1)在刚出发时我公安快艇距走私船5海里.
(2)公安快艇是4分钟6海里,走私船的速度(9-5) ÷4 =1海里/分;
公安快艇的速度是6÷4 = 1.5海里/分.
(3)设L1:y1 =k1t+b
∵过(0,5)和(4,9)点
∴5=b,9=4k1+b.
解得 k1=1,b=5 .
∴y1=t+5 .
设L2:y2=k2t∵过(4,6)点,∴6=4k.
∴k=
∴y2=
(4)当t=6时,y1=11,y2=9;11-9=2
∴6分钟时相距2海里.
科目:初中数学 来源: 题型:
【题目】点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH= AC,则∠ABC所对的弧长等于(长度单位).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对反比例函数 ,下列说法不正确的是( )
A.它的图象在第一、三象限
B.点(﹣1,﹣4)在它的图象上
C.当x<0时,y随x的增大而减小
D.当x>0时,y随x的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:
①“龟兔再次赛跑”的路程为1000米;
②兔子和乌龟同时从起点出发;
③乌龟在途中休息了10分钟;
④兔子在途中750米处追上乌龟.
其中正确的说法是 .(把你认为正确说法的序号都填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.
(1)求点B及点D的坐标.
(2)连结BD,CD,抛物线的对称轴与x轴交于点E.
①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.
②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )
A.a= b
B.a=3b
C.a= b
D.a=4b
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com