精英家教网 > 初中数学 > 题目详情

【题目】在正方形网格中建立平面直角坐标系,使得两点的坐标分别为,过点轴于点C

1)按照要求画出平面直角坐标系,线段,写出点的坐标__________

2)直接写出以为顶点的三角形的面积___________

3)若线段是由线段平移得到的,点的对应点是,写出一种由线段得到线段的过程________

【答案】1)画图见详解,;(2;(3)向下平移1个单位,向左平移3个单位

【解析】

(1)以点A向下1个单位,向左4个单位为坐标原点建立平面直角坐标系即可;根据平面直角坐标系写出点C坐标即可;

(2)根据网格结构可知,就等于长为4,宽为3的长方形的面积减去三个小三角形的面积;

(3)找出从点A到点C的平移方法即可.

解:(1)平面直角坐标系如图所示,点C的坐标为

2)根据上图可知,

3)线段向下平移1个单位,向左平移3个单位即可得到线段

故答案为:向下平移1个单位,向左平移3个单位.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(0.5,0),有下列结论:
①abc>0; ②a﹣2b+4c=0; ③25a﹣10b+4c=0; ④3b+2c>0;⑤a﹣b≥m(am﹣b).
其中所有正确的结论是( )

A.①②③
B.①③④
C.①②③⑤
D.①③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,E,F分别为BC,CD的中点,AE与BF相交于点G.

(1)如图1,求证:AE⊥BF;
(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4,求QF的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.

(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=9,AD=6,∠ADC的平分线交AB于点E,交CB的延长线于点F,AG⊥DE,垂足为G.若AG=4 ,则△BEF的面积是( )

A.
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,A(6a)B(b0)M(0c)P点为y轴上一动点,且(b2)2+|a6|+0

(1)求点BM的坐标;

(2)P点在线段OM上运动时,试问是否存在一个点P使SPAB13,若存在,请求出P点的坐标与AB的长度;若不存在,请说明理由.

(3)不论P点运动到直线OM上的任何位置(不包括点OM),∠PAM、∠APB、∠PBO三者之间是否都存在某种固定的数量关系,如果有,请利用所学知识找出并证明;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y= 的图象如图所示,则二次函数y=﹣kx2﹣2x+ 的图象大致为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AD∥BE,∠B=∠D,直线AB与DC平行吗?说明理由(请在下面的解答过程的空格内填空或在括号内填写理由)。

解:直线AB与DC平行.理由如下:

∵ AD∥BE (已知 )

∴ ∠D = ∠DCE (      

又∵∠B = ∠D (        

∴∠B = ∠_____ (等量代换)

∴ AB∥DC (          

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣ +c且过顶点C(0,5)(长度单位:m)

(1)直接写出c的值;
(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2 , 求购买地毯需多少元?
(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)

查看答案和解析>>

同步练习册答案