精英家教网 > 初中数学 > 题目详情
⊙O是△ABC的外接圆,AB是直径,过点C的切线与AB的延长线相交于点D,AE⊥DC交DC于点E.
(1)求证:AC是∠EAB的平分线;
(2)若圆的半径为3,BD=2,DC=4,求AE和BC.
(1)证明:连接OC,
∵ED为圆O的切线,
∴OC⊥ED,
又AE⊥ED,
∴OCEA,
∴∠EAC=∠ACO,
又OA=OC,∴∠OAC=∠ACO,
∴∠EAC=∠OAC,即AC是∠EAB的平分线;

(2)∵OCAE,
∴∠OCD=∠E,∠COD=∠EAD,
∴△OCD△DEA,
OC
AE
=
OD
AD
,即
3
AE
=
5
8

解得:AE=
24
5

∵CD=4,BD=2,AD=8,
即CD2=BD•AD,且夹角∠D为公共角,
∴△BCD△ACD,且相似比=
4
8
=
1
2

BC
AC
=
1
2
,即AC=2BC,
∵AB为圆O的直径,∴∠ACB=90°,
在Rt△ABC中,根据勾股定理得:AC2+BC2=AB2
即4BC2+BC2=36,解得:BC=
6
5
5

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若过A点且与BC平行的直线交BE的延长线于G点,连接CG.当△ABC是等边三角形时,求∠AGC的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB的延长线于D,
求证:BD=OB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD,AD=8,DC=6,在对角线AC上取一点O,以OC为半径的圆切AD于E,交BC于F,交CD于G.
(1)求⊙O的半径R;
(2)设∠BFE=α,∠CED=β,请写出α,β,90°三者之间的关系式(只需写出一个)并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
(1)请判断CD是否⊙O的切线?并说明理由;
(2)若⊙O的半径为6,求弧AC的长.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为(  )
A.18πcmB.16πcmC.20πcmD.24πcm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

菱形的对角线交点为O,以O为圆心,O到菱形一边的距离为半径的圆与另三边的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,∠C=90°,∠CAE=∠ABC,AC=2,BC=3.
(1)判断AE与⊙O的位置关系,并说明理由;
(2)求OB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D在FA上,且DO平行于⊙O的弦MB,连DM并延长交x轴于点C.
(1)判断直线DC与⊙O的位置关系,并给出证明;
(2)设点D的坐标为(-2,4),①求MC的长;②若动点P从点A出发向点D匀速运动,速度是每秒1个单位长;同时点Q从点D出发向点C匀速运动,速度是每秒2个单位长;其中一个点到达终点时运动即结束.连接PQ交OD于点H,当△PDH为直角三角形时,求点P的坐标.

查看答案和解析>>

同步练习册答案