精英家教网 > 初中数学 > 题目详情
如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.
(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等?请说明理由.
(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等.
分析:(1)求出BP、CQ长,根据全等三角形判定定理推出即可.
(2)根据速度不相等得出BP=CP,CQ=BE=5厘米,求出运动时间,即可求出答案.
解答:解:(1)全等,
理由是:∵AB=10厘米,点E为AB的中点,
∴BE=5厘米,
∵根据题意知BP=3,CQ=3,CP=8-3=5,
即BP=CQ,CP=BE,
在△BPE和△CQP中,
BP=CQ
∠B=∠C
BE=CP

∴△BPE≌△CQP(SAS).

(2)∵点Q的运动速度与点P的运动速度不相等,
∴要使△BPE与△CQP全等,只能CQ=BE=5,BP=CP=
1
2
BC=
1
2
×8厘米=4厘米,
即运动的时间是4厘米÷3厘米/秒=
4
3
秒,
设Q运动的速度是x厘米/秒,
4
3
x=5,
x=
15
4

即当点Q的运动速度为
15
4
厘米/秒时,能够使△BPE与△CQP全等.
点评:本题考查了全等三角形的性质和判定的应用,主要考查学生的理解能力和计算能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案