精英家教网 > 初中数学 > 题目详情
设函数y=ax2+bx+1,其中a可取的值是-1,0,1; b可取的值是-1,1,2;
(1)当a、b 分别取何值时所得函数有最小值?请直接写出满足条件的这些函数和相应的最小值;
(2)如果a在-1,0,1三个数中随机抽取一个,b在-1,1,2中随机抽取一个,共可得到多少个不同的函数解析式?在这些函数解析式中任取一个,求取到当x>0时y随x增大而减小的函数的概率.
【答案】分析:(1)根据二次函数的性质,a>0时,二次函数有最小值,所以,确定a为1,然后根据b的值的不同分别写出解析式,再根据二次函数的最值问题解答即可;
(2)画出树状图,再根据函数的增减性以及概率公式列式计算即可得解.
解答:解:(1)y=x2-x+1,最小值
y=x2+x+1,最小值
y=x2+2x+1,最小值0;

(2)根据题意画出树状图如下:

可得到9个不同的函数解析式,
∵当x>0时y随x增大而减小的函数是y=-x2-x+1,y=-x+1,
∴概率为
点评:本题考查了列表法与树状图法,二次函数的最值问题,函数的增减性,用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•拱墅区一模)设函数y=ax2+bx+1,其中a可取的值是-1,0,1; b可取的值是-1,1,2;
(1)当a、b 分别取何值时所得函数有最小值?请直接写出满足条件的这些函数和相应的最小值;
(2)如果a在-1,0,1三个数中随机抽取一个,b在-1,1,2中随机抽取一个,共可得到多少个不同的函数解析式?在这些函数解析式中任取一个,求取到当x>0时y随x增大而减小的函数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区二模)如图,已知二次函数y=ax2+bx+c的图象交x轴的负半轴于点A(-5,0),交y轴于点B,过点B作BC⊥y轴交函数y=ax2+bx+c的图象于点C(-2,4).

(1)设函数y=ax2+bx+c的图象与x轴的另一个交点为D,求△ABD的面积.
(2)若P为y轴上的一个动点,连接PA、PC,分别过A、C作PC、PA的平行线交于点Q,连接PQ.试探究:
①是否存在这样的点P,使得PQ2=PA2+PC2?为什么?
②是否存在这样的点P,使得PQ取得最小值?若存在,请求出这个最小值,并求出此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax2+bx+c的图象与x轴交于点A(5,0),与y轴交于点B,过点B作BC⊥y轴,BC与函数y=ax2+bx+c的图象交于点C(2,4).
(1)设函数y=ax2+bx+c的图象与x轴的另一个交点为D,求△BDA的面积.
(2)若P为y轴上的一个动点,连接PA、PC,分别过A、C作PC、PA的平行线交于点Q,连接PQ.试探究:
①是否存在点P,使得PQ2=PA2+PC2?请说明理由.
②是否存在点P,使得PQ取得最小值?若存在,请求出这个最小值,并求出此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

设函数y=ax2+bx+c(a≠0),对任意实数t其图象都经过点(2+t,m)和点(2-t,m),且图象又经过点(-1,y1)、(1,y2)、(2,y3)、(5,y4),则函数值y1、y2、y3、y4中,最小的一个不可能是(  )

查看答案和解析>>

同步练习册答案