设函数y=ax2+bx+1,其中a可取的值是-1,0,1; b可取的值是-1,1,2;
(1)当a、b 分别取何值时所得函数有最小值?请直接写出满足条件的这些函数和相应的最小值;
(2)如果a在-1,0,1三个数中随机抽取一个,b在-1,1,2中随机抽取一个,共可得到多少个不同的函数解析式?在这些函数解析式中任取一个,求取到当x>0时y随x增大而减小的函数的概率.
【答案】
分析:(1)根据二次函数的性质,a>0时,二次函数有最小值,所以,确定a为1,然后根据b的值的不同分别写出解析式,再根据二次函数的最值问题解答即可;
(2)画出树状图,再根据函数的增减性以及概率公式列式计算即可得解.
解答:解:(1)y=x
2-x+1,最小值
;
y=x
2+x+1,最小值
;
y=x
2+2x+1,最小值0;
(2)根据题意画出树状图如下:
可得到9个不同的函数解析式,
∵当x>0时y随x增大而减小的函数是y=-x
2-x+1,y=-x+1,
∴概率为
.
点评:本题考查了列表法与树状图法,二次函数的最值问题,函数的增减性,用到的知识点为:概率=所求情况数与总情况数之比.