精英家教网 > 初中数学 > 题目详情
(2010•徐州)如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b-<0的解集.(直接写出答案)

【答案】分析:(1)由B点在反比例函数y=上,可求出m,再由A点在函数图象上,由待定系数法求出函数解析式;
(2)由上问求出的函数解析式联立方程求出A,B,C三点的坐标,从而求出△AOC的面积;
(3)由图象观察函数y=的图象在一次函数y=kx+b图象的上方,对应的x的范围.
解答:解:(1)∵B(1,4)在反比例函数y=上,
∴m=4,
又∵A(n,-2)在反比例函数y=的图象上,
∴n=-2,
又∵A(-2,-2),B(1,4)是一次函数y=kx+b的上的点,联立方程组解得,
k=2,b=2,
,y=2x+2;

(2)过点A作AD⊥CD,
∵一次函数y=kx+b的图象和反比例函数y=的图象的两个交点为A,B,联立方程组解得,
A(-2,-2),B(1,4),C(0,2),
∴AD=2,CO=2,
∴△AOC的面积为:S=AD•CO=×2×2=2;

(3)由图象知:当0<x<1和-2<x<0时函数y=的图象在一次函数y=kx+b图象的上方,
∴不等式kx+b-<0的解集为:0<x<1或x<-2.
点评:此题考查一次函数和反比例函数的性质及图象,考查用待定系数法求函数的解析式,还间接考查函数的增减性,从而来解不等式.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2010•徐州)如图①,梯形ABCD中,∠C=90°.动点E、F同时从点B出发,点E沿折线BA-AD-DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s.设E、F出发ts时,△EBF的面积为ycm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题:
(1)梯形上底的长AD=______cm,梯形ABCD的面积______cm2
(2)当点E在BA、DC上运动时,分别求出y与t的函数关系式(注明自变量的取值范围);
(3)当t为何值时,△EBF与梯形ABCD的面积之比为1:2?

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《反比例函数》(06)(解析版) 题型:解答题

(2010•徐州)如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b-<0的解集.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《不等式与不等式组》(06)(解析版) 题型:解答题

(2010•徐州)如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b-<0的解集.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源:2010年江苏省徐州市中考数学试卷(解析版) 题型:解答题

(2010•徐州)如图①,梯形ABCD中,∠C=90°.动点E、F同时从点B出发,点E沿折线BA-AD-DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s.设E、F出发ts时,△EBF的面积为ycm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题:
(1)梯形上底的长AD=______cm,梯形ABCD的面积______cm2
(2)当点E在BA、DC上运动时,分别求出y与t的函数关系式(注明自变量的取值范围);
(3)当t为何值时,△EBF与梯形ABCD的面积之比为1:2?

查看答案和解析>>

同步练习册答案