精英家教网 > 初中数学 > 题目详情
已知抛物线y=x2-2x+a与直线y=x+1有两个公共点A(x1,y1),B(x2,y2),且x2>x1≥0.
(1)求抛物线的对称轴,并在所给坐标系中画出对称轴和直线y=x+1;
(2)试求a的取值范围;
(3)若AE⊥x,E为垂足,BF⊥x轴,F为垂足,试求S梯形ABFE的最大值.
(1)对称轴x=1,

(2)方程组
y=x2-2x+a
y=x+1
消去y,
得x2-3x+a-1=0.
由题意可知x1,x2是方程x2-3x+a-1=0的两个不相等的根,
∴x1+x2=3,x1•x2=a-1,
∵x2>x1≥0,
∴x1•x2≥0,
得a-1≥0,a≥1,
又△=13-4a>0,
∴a<
13
4

故1≤a<
13
4


(3)∵点A,B在直线y=x+1上,
∴y1=x1+1,y2=x2+1,
∴S梯形ABFE=
1
2
(AE+BF)×EF,
=
1
2
(y1+y2)(x2-x1)=
1
2
(x1+x2+2)
(x1+x2)2-4x1x2
=
5
2
13-4a

∵1≤a<
13
4

∴a=1时,S梯形ABFE取最大值
15
2

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线y=-x2-(m-1)x+m2-6交x轴负半轴于点A,交y轴正半轴于点B(0,3),顶点C位于第二象限,连接AB,AC,BC.
(1)求抛物线的解析式;
(2)点D是y轴正半轴上一点,且在B点上方,若∠DCB=∠CAB,请你猜想并证明CD与AC的位置关系;
(3)设与△AOB重合的△EFG从△AOB的位置出发,沿x轴负方向平移t个单位长度(0<t≤3)时,△EFG与△ABC重叠部分的面积为S,求S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数图象过A、B、C三点,点A(-l,0),B(3,0),点C在y轴负半轴上,且OB=OC.
(1)求这个二次函数的解析式:
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象过点(1,5),并求出平移后图象与y轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以O为原点的直角坐标系中,A点的坐标为(0,3),直线x=-3交x轴于点B,P为线段AB上一动点,作直线PC⊥PO,交于直线x=-3于点C.过P点作直线MN平行于x轴,交y轴于M,交直线x=-3于点N.
(1)当点C在第二象限时,求证:△OPM≌△PCN;
(2)设AP长为m,以P、O、B、C为顶点的四边形的面积为S,请求出S与M之间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线x=-3上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线C1y1=
1
2
x2-x+1
,点F(1,1).
(I)求抛物线C1的顶点坐标;
(II)①若抛物线C1与y轴的交点为A,连接AF,并延长交抛物线C1于点B,求证:
1
AF
+
1
BF
=2

②取抛物线C1上任意一点P(xP,yP)(0<xP<1),连接PF,并延长交抛物线C1于Q(xQ,yQ).试判断
1
PF
+
1
QF
=2
是否成立?请说明理由;
(III)将抛物线C1作适当的平移,得抛物线C2y2=
1
2
(x-h)2
,若2<x≤m时,y2≤x恒成立,求m的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某租凭公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加1辆.租出的车每月需维护费150元,未租出的车每月需维护费50元.
(1)当每辆车的月租金定为3600元时,能租出______辆车(直接填写答案);
(2)设每辆车的月租金为x(x≥3000)元,用含x的代数式填空:
(3)每辆车的月租金定为多少元时,租凭公司的月收益最大,最大月收益是多少元?
为租出的车辆数租出的车辆
所有未租出的车每月的维护费租出的车每辆的月收益

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,在直角坐标系中O是坐标原点,四边形AOCB是矩形,0C=6,OA=2,P是边AB上的任意一点.当点P在边AB上移动时,是否存在这样的点P使得OP⊥PC成立?若存在,请求出点P的坐标,画出满足条件的P点,并求出经过D、P、C三点的抛物线的对称轴;若不存在这样的P点,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:已知抛物线y=
1
4
x2+
3
2
x-4与x轴交于A,B两点,与y轴交于点C,O为坐标原点.
(1)求A,B,C三点的坐标;
(2)已知矩形DEFG的一条边DE在AB上,顶点F,G分别在线段BC,AC上,设OD=m,矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接对角线DF并延长至点M,使FM=
2
5
DF.试探究此时点M是否在抛物线上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数y=kx2-2x-l与x轴有交点,则k的取值范围是(  )
A.k>-1B.k≤1且k≠0C.k<-1D.k≥-1且k≠0

查看答案和解析>>

同步练习册答案