分析 在BD上取点E,使BE=AC,连接AE,可证四边形ACBE是平行四边形,又因为∠C=90°,所以四边形ACBE是矩形.因为BD=2AC,则可求得AB=AD,故三角形可判定.
解答 解:△ABD是等腰三角形.
理由如下:
在BD上取点E,使BE=DE,连接AE,
∴BE=$\frac{1}{2}$BD,
∵BD=2AC,
∴BE=AC,
∵BD∥AC,
∴四边形ACBE是平行四边形,
∵∠C=90°,
∴四边形ACBE是矩形,
∴∠AEB=90°,
即AE⊥BD,
∴AB=AD,
∴△ABD是等腰三角形.
点评 本题综合考查了矩形的判定和平行四边形的性质,解本题要充分利用条件,选择适当的方法证明是等腰三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2017届山东泰安市中考二模数学试卷(解析版) 题型:单选题
如图,C是⊙O上一点,O是圆心,若∠C=35°,则∠AOB的度数为( )
A. 35° B. 70° C. 105° D. 150°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com