精英家教网 > 初中数学 > 题目详情
7.(1)化简:(a-b)2-a(a-2b);
(2)化简求值:$\frac{2x}{{x}^{2}-1}$-$\frac{1}{x-1}$,其中x=$\sqrt{3}$-1.

分析 (1)利用完全平方公式与单项式乘以多项式的运算法则计算,然后再合并同类项即可.
(2)先通分计算分式减法,然后将x=$\sqrt{3}$-1代入即可求得分式的值.

解答 解:(1)(a-b)2-a(a-2b)
=a2-2ab+b2-a2+2ab
=b2

(2)原式=$\frac{2x}{(x+1)(x-1)}$-$\frac{1}{x-1}$,
=$\frac{2x}{(x+1)(x-1)}$-$\frac{x+1}{(x+1)(x-1)}$,
=$\frac{2x-x-1}{(x+1)(x-1)}$,
=$\frac{1}{x+1}$,
把x=$\sqrt{3}$-1代入,原式=$\frac{1}{\sqrt{3}-1+1}$=$\frac{\sqrt{3}}{3}$.

点评 本题考查了整式的混合运算,主要利用完全平方公式与单项式乘多项式的运算法则,熟记公式结构与运算法则是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.计算:2sin30°-$\sqrt{2}$cos45°-tan230°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程:(x-1)2-2(x-1)-8=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:
(1)2a3b•(-3ab22            
(2)[(-$\frac{1}{4}$)÷2-3+(-23)]×(-1)2016

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则可列一元二次方程为x2-x-56=0.(化用一般式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,O为菱形ABCD对角线的交点,M是射线CA上的一个动点(点M与点C,O,A都不重合),过点A,C分别向直线BM作垂线段,垂足分别为E,F,连接OE,OF.
(1)①依据题意补全图形;
②猜想OE与OF的数量关系为OE=OF.
(2)小东通过观察、实验发现点M在射线CA上运动时,(1)中的猜想始终成立.
小东把这个发现与同学们进行交流,通过讨论,形成了证明(1)中猜想的几种想法:
想法1:由已知条件和菱形对角线互相平分,可以构造与△OAE全等的三角形,从而得到相等的线段,再依据直角三角形斜边中线的性质,即可证明猜想;
想法2:由已知条件和菱形对角线互相垂直,能找到两组共斜边的直角三角形,例如其中的一组△OAB和△EAB,再依据直角三角形斜边中线的性质,菱形四边 相等,可以构造一对以OE和OF为对应边的全等三角形,即可证明猜想.

请你参考上面的想法,帮助小东证明(1)中的猜想(一种方法即可).
(3)当∠ADC=120°时,请直接写出线段CF,AE,EF之间的数量关系是EF=$\sqrt{3}$(CF+AE).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.把下面的推理过程补充完整,并在括号内注明理由
如图,点B、D在线段AE上,BC∥EF,AD=BE,BC=EF,则AC与DF平行吗?
解:∵BC∥EF(已知)
∴∠ABC=∠FED(两直线平行,同位角相等)
∵AD=BE
∴AD+DB=DB+BE(等式性质)
即AB=DE
在△ABC与△DEF中
$\left\{\begin{array}{l}{AB=DE}\\{∠ABC=∠E}\\{BC=EF}\end{array}\right.$
∴△ABC≌△DEF(SAS)
∴∠A=∠FDE(全等三角形的对应角相等)
∴AC∥DF(同位角相等,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:($\sqrt{24}$+$\sqrt{18}$)÷$\sqrt{2}$+(2-$\sqrt{3}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某服装店专营一批进价为每件200元的品牌衬衫,每件售价为300元,每天可售出40件,若每件降价10元,则每天多售出10件,请根据以上信息解答下列问题:
(1)为了使销售该品牌衬衫每天获利4500元,并且让利于顾客,每件售价应为多少元;
(2)该服装店将该品牌的衬衫销售完,在补货时厂家只剩100件库存,经协商每件降价a元,全部拿回.按(1)中的价格售出80件后,剩余的按八折销售,售完这100件衬衫获利50%,求a的值.

查看答案和解析>>

同步练习册答案