精英家教网 > 初中数学 > 题目详情
8.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=44°,则∠EPF=67°.

分析 根据平行线的性质和角平分线的定义求解.

解答 解:∵AB∥CD,
∴∠EFD=180-∠FEB;
∵EP⊥EF,与∠EFD的平分线FP相交于点P,
∴∠EFD=180°-44°-90°=46°,
∴∠EFP=23°;
∴∠EPF=180°-90°-23°=67°.
故答案为:67.

点评 本题考查平行线的性质,关键是根据:两直线平行,同旁内角互补解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:
摸球的次数n1001502005008001000
摸到白球的次数m5896116295484601
摸到白球的频率$\frac{m}{n}$0.580.640.580.590.6050.601
请估计:
(1)当n很大时,摸到白球的频率将会接近0.6;(精确到0.1)
(2)假如你去摸一次,你摸到白球的概率是0.6,摸到黑球的概率是0.4;
(3)试估算口袋中黑球有多少只?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.已知等腰三角形的一边长为9,另一边长为方程x2-8x+15=0的根,则该等腰三角形的周长为19或21或23.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.某种油菜籽在相同条件下的发芽试验结果如下:
每批粒数n100300400600100020203000
发芽的频数m9628334455294819122848
发芽的频率0.960.940.860.920.950.950.95
由此可以估计油菜籽发芽的概率约为0.95(精确到0.01),其依据是频率的稳定性.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解方程组、不等式组:
(1)解方程组$\left\{\begin{array}{l}{5x-2y=4}\\{2x-y=1}\end{array}\right.$
(2)解不等式组$\left\{\begin{array}{l}{3(x-1)<4x-7}\\{\frac{x+2}{4}-\frac{x}{5}<1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如果多边形的每个外角都是40°,那么这个多边形的边数是9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.今年“五•一”期间,中国秀美的边境小城凤城迎来了许多中外游客,沈阳小丹也随爸爸来凤城游玩,因两天游玩的时间不能游览所有景区,爸爸让小丹第一天从A、凤凰山区风景名胜区;B、大梨树村生态旅游区中任意选一处游玩;第二天从C、玉龙湖风景区;D、蒲石河森林公园;E、东汤温泉度假村中任意选一处游玩.
(1)请用树状图或列表法说明小丹所有可能选择的方式(用字母表示);
(2)求小丹恰好选中A和D这两处的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知反比例函数y1=$\frac{k}{x}$的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2).
(1)分别求出这两个函数的关系式;
(2)观察图象,直接写出关于x的不等式$\frac{k}{x}$-ax-b>0的解集;
(3)如果点C与点A关于x轴对称,求△ABC的面积.

查看答案和解析>>

同步练习册答案