精英家教网 > 初中数学 > 题目详情

如图一,在Rt△ABC中,∠ACB=90°,∠A=30°,P为BC边上任意一点,点Q为AC边动点,分别以Cm、MQ为边做等边△MPF和等边△PQE,连接EF.
(一)试探索EF与AB位置关系,并证明;
(5)如图5,当点P为BC延长线上任意一点时,(一)结论是否成立?请说明理由.
(3)如图3,在Rt△ABC中,∠ACB=90°,∠A=m°,P为BC延长线上一点,点Q为AC边动点,分别以CP、PQ为腰做等腰△PCF和等腰△PQE,使得PC=PF,PQ=PE,连接EF.要使(一)的结论依然成立,则需要添加怎样的条件?为什么?


(1)见解析
(2)见解析
(3)见解析

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•闸北区一模)已知:如图1,在Rt△OAC中,AO⊥OC,点B在OC边上,OB=6,BC=12,∠ABO+∠C=90°.动点M和N分别在线段AB和AC边上.
(l)求证△AOB∽△COA,并求cosC的值;
(2)当AM=4时,△AMN与△ABC相似,求△AMN与△ABC的面积之比;
(3)如图2,当MN∥BC时,将△AMN沿MN折叠,点A落在四边形BCNM所在平面的点为点E.设MN=x,△EMN与四边形BCNM重叠部分的面积为y,试写出y关于x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•锦州一模)如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,P为BC边上任意一点,点Q为AC边动点,分别以CP、PQ为边做等边△PCF和等边△PQE,连接EF.
(1)试探索EF与AB位置关系,并证明;
(2)如图2,当点P为BC延长线上任意一点时,(1)结论是否成立?请说明理由.
(3)如图3,在Rt△ABC中,∠ACB=90°,∠A=m°,P为BC延长线上一点,点Q为AC边动点,分别以CP、PQ为腰做等腰△PCF和等腰△PQE,使得PC=PF,PQ=PE,连接EF.要使(1)的结论依然成立,则需要添加怎样的条件?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如果一条直线能够将一个封闭图形的周长和面积同时平分,那么就把这条直线称作这个封闭图形的二分线.

(1)请在图1的三个图形中,分别作一条二分线.
(2)请你在图2中用尺规作图法作一条直线 l,使得它既是矩形的二分线,又是圆的二分线.(保留作图痕迹,不写画法).
(3)如图3,在Rt△ABC中,∠A=90°,AB=3,AC=4,是否存在过AB边上的点P的二分线?若存在,求出AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东省中考模拟7数学试卷(解析版) 题型:解答题

如图一,在Rt△ABC中,∠ACB=90°,∠A=30°,P为BC边上任意一点,点Q为AC边动点,分别以Cm、MQ为边做等边△MPF和等边△PQE,连接EF.

(一)试探索EF与AB位置关系,并证明;

(5)如图5,当点P为BC延长线上任意一点时,(一)结论是否成立?请说明理由.

(3)如图3,在Rt△ABC中,∠ACB=90°,∠A=m°,P为BC延长线上一点,点Q为AC边动点,分别以CP、PQ为腰做等腰△PCF和等腰△PQE,使得PC=PF,PQ=PE,连接EF.要使(一)的结论依然成立,则需要添加怎样的条件?为什么?

 

查看答案和解析>>

同步练习册答案