精英家教网 > 初中数学 > 题目详情

【题目】某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.
请你根据以上提供的信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生对数学学习喜欢程度的众数是
(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?

【答案】
(1)解:由题意可得,

调查的学生有:30÷25%=120(人),

选B的学生有:120﹣18﹣30﹣6=66(人),

B所占的百分比是:66÷120×100%=55%,

D所占的百分比是:6÷120×100%=5%,

故补全的条形统计图与扇形统计图如右图所示,


(2)比较喜欢
(3)解:由(1)中补全的扇形统计图可得,

该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),

即该年级学生中对数学学习“不太喜欢”的有240人.


【解析】(2)由(1)中补全的条形统计图可知, 所抽取学生对数学学习喜欢程度的众数是:比较喜欢,
故答案为:比较喜欢;
(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.

1)求第一批玩具每套的进价是多少元?

2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某港口位于东西方向的海岸线上.远航号、海天号轮船同时离开港口,各自沿一固定方向航行,远航号每小时航行16海里,海天号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道远航号沿东北方向航行,能知道海天号沿哪个方向航行?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:

(1)九年级(1)班参加体育测试的学生有   人;

(2)将条形统计图补充完整;

(3)在扇形统计图中,等级B部分所占的百分比是   ,等级C对应的圆心角的度数为   

(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有   人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ABC90°,AB8BC6,点DAC边上的动点,点D从点C出发,沿边CA向点A运动,当运动到点A时停止,若设点D运动的时间为t秒.点D运动的速度为每秒1个单位长度.

(1)t2时,CD AD

(2)求当t为何值时,△CBD是直角三角形,说明理由;

(3)求当t为何值时,△CBD是以BDCD为底的等腰三角形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为(  )

A. 115° B. 120° C. 125° D. 130°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:

(1)ABC的顶点都在方格纸的格点上,先将ABC向右平移2个单位,再向上平移3个单位,得到A1B1C1,其中点A1、B1、C1分别是A、B、C的对应点,试画出

A1B1C1

(2)连接AA1、BB1,则线段AA1、BB1的位置关系为   ,线段AA1、BB1的数量关系为   

(3)A1B1C1的面积为   (平方单位)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,点D AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,分别以AB、AD为边向外作等边ABE,ADF,延长CB交AE于点G,点G落在点A、E之间,连接EF、CF.则以下四个结论:CGAE;②△CDF≌△EBC;③∠CDF =EAF;④△ECF是等边三角形.其中一定正确的是 .(把正确结论的序号都填上)

查看答案和解析>>

同步练习册答案