精英家教网 > 初中数学 > 题目详情
20.如图,在平面直角坐标系中,抛物线y═$\frac{1}{2}$x2+bx+c经过点A(0,-1),B(2,0)P(t,0)是x轴负半轴上一动点,过点P作PA的垂线交△PAB的外接圆于点C,△PAB的外接圆与y轴交于点D,与抛物线在第一象限限交于点E.
(1)求抛物线的解析式;
(2)当△PAB的外接圆的圆心落在y轴上时,求该圆的半径;
(3)用含t的式子表示C、D的坐标.

分析 (1)把A、B两点的坐标代入可求得b、c的值,可求得抛物线的解析式;
(2)由条件可知PA=PB,可求得P点坐标,由勾股定理可求得半径;
(3)可先证明△AOB∽△APC,可求得$\frac{AP}{PC}$=$\frac{1}{2}$,过P作y轴的平行线,分别过A、C作其垂线,垂足分别为G、F,则AG=-t,GP=1,可用t表示出PF、CF,可求得C点坐标,又结合条件可证明∠CDA=90°,可表示出D点坐标.

解答 解:(1)把A(0,-1),B(2,0)代入y=$\frac{1}{2}$x2+bx+c,
可得$\left\{\begin{array}{l}{-1=c}\\{0=2+2b+c}\end{array}\right.$,
解得$\left\{\begin{array}{l}{b=-\frac{1}{2}}\\{c=-1}\end{array}\right.$.
∴抛物线解析式为y=$\frac{1}{2}$x2-$\frac{1}{2}$x-1;
(2)当△PAB的外接圆的圆心落在y轴上时,AP=AB,此时P(-2,0),
设圆的半径为r,则(r-1)2+22=r2
解得r=2.5;
(3)∵∠ACP=∠ABP,且∠AOB=90°=∠APC,
∴△AOB∽△APC,
∴$\frac{AP}{AO}$=$\frac{PC}{OB}$,即$\frac{AP}{PC}$=$\frac{1}{2}$,
∵∠APC=90°,
∴∠APG+∠CPF=∠CPF+∠PCF=90°,
∴∠APG=∠PCF,且∠AGP=∠CFP,
∴△APG∽△PCF,
∴$\frac{AG}{PF}$=$\frac{PG}{CF}$=$\frac{AP}{PC}$=$\frac{1}{2}$,
如图,过P作y轴的平行线,分别过A、C作其垂线,垂足分别为G、F,则AG=-t,GP=1,

∴PF=-2t,CF=2,
∴C(2+t,-2t),
连接CD,
∵∠APC=90°,
∴AC为直径,
∴∠CDA=90°,
∴D(0,-2t).

点评 本题主要考查二次函数的综合应用,涉及待定系数法、相似三角形的判定和性质、圆周角定理等知识点.在(1)中注意待定系数法应用的步骤,在(2)中注意垂径定理的应用,在(3)中,注意圆周角定理的应用.本题考查知识较为基础,难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.观察下列各个等式:12=1,12+22=5,12+22+32=14,12+22+32+42=30,….
(1)你能从中推导出计算12+22+32+42+…+n2的公式吗?请写出你的推导过程;
(2)请你用(1)中推导出的公式来解决下列问题:
已知:如图,抛物线y=-x2+2x+3与x、y轴的正半轴分别交于点A、B,将线段OAn等分,分点从左到右依次为A1、A2、A3、A4、A5、A6、…、An-1,分别过这n-1个点作x轴的垂线依次交抛物线于点B1、B2、B3、B4、B5、B6、…、Bn-1,设△OBA1、△A1B1A2、△A2B2A3、△A3B3A4、…、△An-1Bn-1A的面积依次为S1、S2、S3、S4、…、Sn.
①当n=2013时,求s1+s2+s3+s4+…+s2013的值;
②试探究:当n取到无穷无尽时,题中所有三角形的面积和将是什么值?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,能判断AB∥CE的条件是(  )
A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.在△ABC中,∠B=40°,∠C=60°,则∠B与∠C的平分线相交夹角(只考虑小于直角的夹角)度数为(  )
A.50°B.100°C.130°D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知矩形ABCD,AB=8,BC=4,将它绕着点B按顺时针方向旋转α度(0<α≤180)得到矩形A1BC1D1,此时A1B,C1D1这两边所在的直线分别与CD边所在的直线相交于点P、Q,当DP:DQ=1:2时,DP的长为5或1+$\sqrt{11}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,己知AB∥DC,且AB=CD,BF=DE,说明AE∥CF,AF∥CE的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资w(吨)与时间t(小时)之间的关系如图所示,求这批物资从开始调进到全部调出所需要的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,抛物线C1:y=x2+2x-3的顶点为P,将该抛物线绕点A(a,0)(a>0)旋转180°后得到的抛物线C2,抛物线C2的顶点为Q,与x轴的交点是B、C,点B在点C的右侧.若∠PQB=90°,则a=7.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在?ABCD中,点E在AD上,若DE=6,S△DEF:S△BCF=4:25,则AE=9.

查看答案和解析>>

同步练习册答案