精英家教网 > 初中数学 > 题目详情

如图,P为等边△ABC内一点,PA、PB、PC的长为正整数,且PA2+PB2=PC2,设PA=m,n为大于5的实数,满m2n+30m+9n≤5m2+6mn+45,求△ABC的面积.

解:m2n+30m+9n≤5m2+6mn+45,
∴分解因式得:(n-5)(m-3)2≤0,
∵n为大于5的实数,
∴m-3=0,∵即:PA=m=3,
∵PA2+PB2=PC2,PA、PB、PC的长为正整数,
∴PB=4,PC=5,
设∠PAB=Q,等边三角形的边长是a,
则∠PAC=60°-Q,
由余弦定理得:cosQ==,(1)
cos(60°-Q)==,(2)
而cos(60°-Q)=cos60°cosQ-sin60°sinQ,
=-=,(3)
将(1)代入(3)得:-=
解得:sinQ=
∵(sinQ)2+(cosQ)2=1,
+=1,
令a2=t,
+=1,
解得:t1=25+12,t2=25-12
由(1)知a>0,cosQ>0,
>0,a2>7,
∴t2=25-12<7,不合题意舍去,
∴t=25-12
即a2=25-12
过A作AD⊥BC于D,
∵等边△ABC,
∴BD=CD=a,
由勾股定理得:AD=
∴S△ABC=•a•==9+
答:△ABC的面积是9+
分析:由已知求出PA、PB、PC的长度,设∠PAB=Q,等边三角形的边长是a,∠PAC=60°-Q,根据锐角三角函数(余弦定理)求出cosQ和cos(60°-Q)的值,即可求出a的长度,过A作AD⊥BC于D,求出AD的长度,根据三角形的面积公式即可求出答案.
点评:本题主要考查了勾股定理的逆定理,用公式法解一元二次方程,用提取公因式法分解因式,余弦定理等知识点,运用余弦定理求等边三角形的边长是解此题的关键.题型较好但难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

3、如图,△ABC为等边三角形,∠ABC、∠ACB的平分线相交于点O,OE∥AB交BC于点E,OF∥AC交BC于点F,图中等腰三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为等边三角形,点D,E,F分别在AB,BC,CA边上,且△DEF是等边三角形,求证:△ADF≌△CFE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为等边三角形,AD为BC边上的高,且AB=2,则正方形ADEF的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•普陀区模拟)如图,△AOB为等边三角形,点B的坐标为(-2,0),过点C(2,0)作直线l交AO于点D,交AB于E,点E在反比例函数y=
k
x
(x
<0)的图象上,若△ADE和△DCO(即图中两阴影部分)的面积相等,则k值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△AOB为等边三角形,点B的坐标为(-2,0),过点C(2,0)作直线l交AO于D,交AB于E,点E在某反比例函数图象上,当△ADE和△DCO的面积相等时,那么该反比例函数解析式为(  )

查看答案和解析>>

同步练习册答案