精英家教网 > 初中数学 > 题目详情
36、如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使BE=CF=DG=AH.
求证:四边形EFGH是正方形.
分析:此题先根据正方形ABCD的性质,可证△AEH≌△CGF≌△DHG(SAS),得四边形EFGH为菱形,再求一个角是直角从而证明它是正方形.
解答:证明:∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠EBF=∠HAE=∠GDH=∠FCG,
又∵BE=CF=DG=AH,
∴CG=DH=AE=BF
∴△AEH≌△CGF≌△DHG,
∴EF=FG=GH=HE,∠EFB=∠HEA,
∴四边形EFGH为菱形,
∵∠EFB+∠FEB=90°,∠EFB=∠HEA,
∴∠FEB+∠HEA=90°,
∴四边形EFGH是正方形.
点评:本题主要考查了正方形的判定方法:一角是直角的菱形是正方形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则下列结论:①OH∥BF;②∠CHF=45°;③GH=
1
4
BC;④FH2=HE•HB,正确的是(  )
A、①②③B、②③④
C、①②④D、①③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使BE=CF=DG=AH.
求证:四边形EFGH是正方形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使BE=CF=DG=AH.
求证:四边形EFGH是正方形.
精英家教网

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使
BE=CF=DG=AH.
求证:四边形EFGH是正方形.

查看答案和解析>>

同步练习册答案