精英家教网 > 初中数学 > 题目详情
5.观察下列数的排列规律:$\frac{1}{3}$,$\frac{2}{8}$,$\frac{3}{15}$,$\frac{4}{24}$…可知第n个数是$\frac{n}{(n+1)^{2}-1}$.

分析 由题意可知:分子是从1开始的连续自然数,分母是分子加1的平方,由此得出第n个数为$\frac{n}{(n+1)^{2}-1}$.

解答 解:∵$\frac{1}{3}$,$\frac{2}{8}$,$\frac{3}{15}$,$\frac{4}{24}$…,
∴第n个数为$\frac{n}{(n+1)^{2}-1}$.
故答案为:$\frac{n}{(n+1)^{2}-1}$.

点评 此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.用适当的方法解下列方程
(1)(x+3)2-25=0
(2)2x2+4x+1=0
(3)3(x-2)2=x(x-2)
(4)(x+1)(x+8)=-12.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.长方体有8个顶点,有6个面,有12条棱.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.”双十一“淘宝网销售一款工艺品,每件的成本是50元.销售期间发现,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.设当销售单价为x元,每天的销售利润为y元.
(1)求出y与x之间的函数表达式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要5000元?(每天的总成本=每件的成本×每天的销售量)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.若a=$(-\frac{3}{4})^{-3}$,b=$(-\frac{3}{4})^{3}$,c=$(\frac{3}{4})^{-3}$,请比较a,b,c的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.一次函数的图象与直线y=2x+5在y轴上交于一点A,且过点B(-3,8).
(1)求这个函数的解析式;
(2)求△OAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.一天,小明在家和学校之间行走,为了好奇,他测了一下在无风时的速度是50米/分,从家到学校用了15分钟,从原路返回用了18分钟20秒.设风的速度是x米/分,则所列方程为(  )
A.15(50+x)=18.2(50-x)B.15(50-x)=18.2(50+x)C.15(50+x)=$\frac{55}{3}$(50-x)D.15(50-x)=$\frac{55}{3}$(50+x)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图1,在平面直角坐标系中,点O为坐标原点,直线y=kx+4k与x轴交于点A,与y轴交于点B,以AO、BO为邻边作矩形AOBC,其面积是8.
(1)求直线AB的解析式;
(2)如图2,点P从点O出发,沿线段OA向终点A运动,速度为每秒2个单位长度,点Q从点B出发,沿线段BO向终点O运动,速度为每秒1个单位长度,连接PQ,P、Q两点同时出发,运动时间为t秒,当t为何值时,△CPQ的面积为$\frac{13}{4}$;
(3)如图3,在(2)的条件下,当t=1时,P、Q两点同时停止运动,在x轴上是否存在点M,使得∠MQP=45°?若存在,求出点M坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,已知在矩形ABCD中,AB=12,BC=16,⊙O1和⊙O2分别是△ABC和△ADC的内切圆,点E、F为切点,则EF的长是4$\sqrt{5}$cm.

查看答案和解析>>

同步练习册答案