科目:初中数学 来源: 题型:
如图,在平面直角坐标系中完成下列各题:
(1)在图中作出关于轴对称的.
(2)在x轴上画出点P,使PA+PB的值最小。
(3)在x轴上画出点Q,使Q B1 +Q C的值最小
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在四边形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是( )
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,直线L是第一、三象限的角平分线.
(1)由图观察易知A(0,2)关于直线l的对称点的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线l的对称点、的位置,并写出他们的坐标: 、 ;
(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点的坐标为 (不必证明);
(3)已知两点D(1,-3)、E(-1,-4),试在直线L上画出点Q,使点Q到D、E两点的距离之和最小,最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3) 拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com