分析 (1)根据圆周角的定理,∠APB=90°,p是弧AB的中点,所以三角形APB是等腰三角形,利用勾股定理即可求得;
(2)延长AC,PB交于点G,根据PD⊥BC,AC⊥BC.得到AC∥PD,得到比例式,求得CG=4,根据勾股定理求出BC的长度,得到GB的长度通过三角形相似得出结论.
解答 解:(1)如图(1)所示,连接PB,
∵AB是⊙O的直径且P是$\widehat{AB}$的中点,
∴∠PAB=∠PBA=45°,∠APB=90°,
又∵在等腰三角形△APB中有AB=13,
∴PB=$\frac{AB}{\sqrt{2}}$=$\frac{13}{\sqrt{2}}$=$\frac{13\sqrt{2}}{2}$;
(2)如图(2)所示,延长AC,PB交于点G,
∵PD⊥BC,AC⊥BC.
∴AC∥PD,
∴$\frac{PE}{GC}$=$\frac{BE}{BC}$=$\frac{DE}{AC}$,
∴$\frac{DE}{EP}$=$\frac{AC}{GC}$=$\frac{5}{4}$,
∴CG=4,
∵AB=13,AC=5,
∴BC=$\sqrt{{AB}^{2}{-AC}^{2}}$=12,
∴$GB=4\sqrt{10}$,
∵∠GCB=ABP,G=∠G,
∴△GCP∽△ABG,
∴$\frac{GC}{GB}$=$\frac{CP}{AB}$,
∴CP=$\frac{13\sqrt{10}}{10}$.
点评 本题考查了圆周角的定理,垂径定理,勾股定理,等腰三角形判定和性质,相似三角形的判定和性质,作出辅助线是本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (2,-1) | B. | (-2,1) | C. | (1,-2) | D. | (-1,2) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com