精英家教网 > 初中数学 > 题目详情
请阅读下列材料:
1
1×3
=
1
2
(1-
1
3
)
1
3×5
=
1
2
(
1
3
-
1
5
)
1
5×7
=
1
2
(
1
5
-
1
7
)

1
2007×2009
=
1
2
(
1
2007
-
1
2009
)

1
1×3
+
1
3×5
+
1
5×7
+…+
1
2007×2009

=
1
2
(
1
1
-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2007
-
1
2009
)

=
1
2
×(1-
1
2009
)

=
1004
2009

解答下列问题:
(1)在和式
1
1×3
+
1
3×5
+
1
5×7
+…
中,第5项为
 
,第n项为
1
(2n-1)(2n+1)
,上述求和的想法是:将和式中的各分数转化为两个数之差,使得首末两项外的中间各项可以
 
,从而达到求和目的.
(2)利用上述结论计算
1
x(x+2)
+
1
(x+2)(x+4)
+
1
(x+4)(x+6)
+…+
1
(x+2008)(x+2010)
分析:本题为规律性试题,我们可以看到,每一项分母为相邻的两个奇数项相乘,每一项分母的后一个奇数与它后一项分母的前一个奇数相等,寻找规律计算即可.
解答:解:(1)
1
9×11
1
(2n-1)(2n+1)
、抵消为零;

(2)原式=
1
2
(
1
x
-
1
x+2
+
1
x+2
-
1
x+4
+
1
x+4
-
1
x+6
+
+
1
x+2008
-
1
x+2010
)

=
1
2
(
1
x
-
1
x+2010
)

=
1005
x(x+2010)
点评:本题考查了寻找规律性的问题,关键为找到每一项的共性,以及每一项之间的联系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

25、请阅读下列材料:
已知:如图1在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45度.探究线段BD、DE、EC三条线段之间的数量关系.
小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图2,其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:如图(2),一圆柱的高AB=5dm,底面半径为5dm,BC是底面直径,求一只蚂蚁从A点出发沿圆柱表面爬行到点C的最短路线.小明设计了两条路线:
路线1:沿侧面展开图中的线段AC.如下图(2)所示:
精英家教网
设路线1的长度为l1,则l12=AC2=AB2+BC2=52+(5π)2=25+25π2
路线2:高线AB+底面直径BC.如上图(1)所示:
设路线2的长度为l2,则l22=(AB+BC)2=(5+10)2=225
∵l12-l22=25+25π2-225=25π2-200=25(π2-8)>0
∴l12>l22,∴l1>l2
所以要选择路线2较短.
(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1dm,高AB仍为5dm”继续按前面的路线进行计算.请你帮小明完成下面的计算:
路线1:l12=AC2=AB2+BC2=
 

路线2:l22=(AB+BC)2=
 

∵l12
 
l22,∴l1
 
l2( 填>或<)
所以应选择路线
 
(填1或2)较短.
(2)请你帮小明继续研究:设圆柱的底面半径为r,高为h,当蚂蚁走上述两条路线的路程出现相等情况时,求出此时h与r的比值(本小题π的值取3).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•贵阳模拟)请阅读下列材料:
问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:
路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π)

(1)设路线1的长度为L1,则L12=
49
49
.设路线2的长度为L2,则L22=
25+π2
25+π2
.所以选择路线
2
2
(填1或2)较短.
(2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:L12=
121
121
.路线2:L22=
1+25π2
1+25π2
.所以选择路线
1
1
(填1或2)较短.
(3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:问题:现有5分边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中画出拼接成的新正方形.
小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=
5
,由此可知新正方形的边长等于两个小正方形组成的矩形对角线长,于是,画出如图2所示的分割线,拼出如图3所示的新正方形.
请你参考小东的做法,解决以下问题.要求:在图4中画出分割线,并在图5的正方形网格图(图中每个小正方形的边长均为1)中画出拼接的新正方形.(说明:直接画出图形,不要求写分析过程)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:已知方程x2+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x.
所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-3=0,化简,得y2+2y-12=0.
故所求方程为y2+2y-12=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的3倍.

查看答案和解析>>

同步练习册答案