精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,求BC的长.

解:连接CD,
∵BD为⊙O的直径,
∴∠BAD=∠BCD=90°,
∴∠DBC=∠DAC=120°-90°=30°,
∴∠BDC=60°.
∵AB=AC,

∴∠BDA=∠ADC=30°.
∵在△BDC和△DBA中,

∴△BDC≌△DBA(AAS).
∴BC=AD=6.
分析:首先连接CD,由BD为⊙O的直径,根据直径所对的圆周角是直角,可得∠BAD=∠BCD=90°,继而可求得∠DBC=∠BDA,则可证得△BDC≌△DBA(AAS),则可求得BC=AD=6.
点评:此题考查了圆周角定理.全等三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案