精英家教网 > 初中数学 > 题目详情
8.解方程组
(1)$\left\{\begin{array}{l}{3x+2y=19}\\{2x-y=1}\end{array}\right.$
(2)$\left\{\begin{array}{l}{4(x+y)-5(x-y)=2}\\{\frac{x+y}{2}+\frac{x-y}{3}=6}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{3x+2y=19①}\\{2x-y=1②}\end{array}\right.$,
①+②×2得:7x=21,即x=3,
把x=3代入②得:y=5,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=5}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{-x+9y=2①}\\{5x+y=36②}\end{array}\right.$,
①×5+②得:46y=46,即y=1,
把y=1代入①得:x=7,
则方程组的解为$\left\{\begin{array}{l}{x=7}\\{y=1}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.求下列各式的值:
(1)$\sqrt{1.44}$;                  (2)$\sqrt{\frac{9}{64}}$;           (3)$\sqrt{1+\frac{24}{25}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若二次根式$\frac{\sqrt{x+1}}{2}$在实数范围内有意义,则x的取值范围是(  )
A.x≥-1B.x≠2C.x≥-1且x≠2D.以上都不正确

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.在?ABCD中,∠A+∠C=220°,则∠B=70°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点(  )
A.(-1,1)B.(-2,-1)C.(-3,1)D.(1,-2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).
(1)直接写出点E的坐标(-2,0);
(2)在四边形ABCD中,点P从点B出发,沿BC→CD移动.若点P的速度为每秒1个单位长度,运动时间为t秒,请解决以下问题,并说明你的理由:
①当t为多少秒时,点P的横坐标与纵坐标互为相反数;
②求点P在运动过程中的坐标(用含t的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在△ABC中,已知AB=AC=6,BC=8,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于P点.
(1)求证:△ABE∽△ECP;
(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形,使得AP=EP,若能,求出BE的长; 若不能,请说明理由;
(3)当BE为何值时,AP有最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.
(1)求B的坐标;
(2)当点P运动到点(t,0)时,试用含t的式子表示点D的坐标;
(3)是否存在点P,使△OPD的面积等于$\frac{\sqrt{3}}{4}$,若存在,请求出符合条件的点P的坐标(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知AB是⊙O直径,点C、D是⊙O上两点,连接AD、CD、AC.
(1)如图1,过点D作⊙O的切线MN,当MN∥AC时,求证:∠ADM=∠ADN;
(2)如图2,连接BD交AC于点E,当CD=OA时,求证:∠BEC=60°;
(3)在(2)的条件下,取$\widehat{AB}$中点F,若E为BD中点,CD=7,求EF的长.

查看答案和解析>>

同步练习册答案