精英家教网 > 初中数学 > 题目详情
阅读下面的文字,解答问题:
题目:已知二次函数y=ax2+bx+c的图象经过A(0,a),B(1,-2)两点,求证:这个二次函数图象的对称轴是直线x=2.
题目中有一段被墨水污染了而无法辨认的文字.
(1)根据现有的信息,你能否求出题目中二次函数的解析式?若能,写出解题过程;若不能,请说明理由;
(2)请你根据已有信息,增加一个适当的条件,把原题补充完整,所填条件是______.
【答案】分析:(1)利用待定系数法,将各点代入解析式,组成方程组求未知系数;
(2)再添加一个条件,能求出解析式即可.
解答:解:(1)能求出二次函数的解析式.
把A(0,a),B(1,-2)分别代入解析式,并根据=2,组成方程组得:
,解得,解析式为y=x2-4x+1.

(2)求出函数y=x2-4x+1的顶点坐标为(2,-3),把顶点坐标加上即把题目补充完整,
故所填条件是经过点C(2,-3).(答案不唯一)
点评:此题是一道条件开方性题目,解答此类题目不仅需要有扎实的基础知识,更需要有严密的推理,对同学们要求较高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面的文字,解答问题:
大家知道
2
是无理数,而无理数是无限不循环小数,因此
2
的小数部分我们不可能全部地写出来,于是小明用
2
-1
来表示
2
的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理的,因为
2
的整数部分是1,将这个数减去其整数部分,所得的差就是小数部分.
又例如:因为
4
7
9
,即2<
7
<3

所以
7
的整数部分为2,小数部分为(
7
-2)

请解答:
(1) 如果
13
的整数部分为a,那么a=
 
.如果3+
3
=b+c
,其中b是整数,且0<c<1,那么b=
 
,c=
 

(2) 将(1)中的a、b作为直角三角形的两条直角边,请你计算第三边的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面的文字,解答问题:
题目:已知二次函数y=ax2+bx+c的图象经过A(0,a),B(1,-2)两点,求证:这个二次函数图象的对称轴是直线x=2.
题目中有一段被墨水污染了而无法辨认的文字.
(1)根据现有的信息,你能否求出题目中二次函数的解析式?若能,写出解题过程;若不能,请说明理由;
(2)请你根据已有信息,增加一个适当的条件,把原题补充完整,所填条件是
 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面的文字,解答问题:
大家知道
2
是无理数,而无理数是无限不循环小数,因此
2
的小数部分我们不可能全部地写出来,于是小明用
2
-1
来表示
2
的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理,因为
2
的整数部分是1,将这个数减去其整数部分,差就是小数部分.
又例如:∵
4
7
9
,即2<
7
<3

7
的整数部分为2,小数部分为(
7
-2)

请解答:(1)如果
5
的小数部分为a,
13
的整数部分为b,求a+b-
5
的值;
(2)已知:10+
3
=x+y
,其中x是整数,且0<y<1,求x-y的相反数.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面的文字,解答问题.
大家都知道
2
是无理数,而无理数是无限不循环小数,因此
2
的小数部分我们不可能全部地写出来,于是小明用
2
-1来表示
2
的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理的,因为
2
的整数部分是1,将这个数减去其整数部分,差就是小数部分.
请解答:a表示
11
的整数部分,b表示
11
的小数部分.求2a+b-
11
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面的文字,解答问题.
大家知道
2
是无理数,而无理数是无限不循环小数,因此
2
的小数部分我们不可能全部地写出来,但是由于1<
2
<2,所以
2
的整数部分为1,将
2
减去其整数部分1,差就是小数部分
2
-1,根据以上的内容,解答下面的问题:
(1)
5
的整数部分是
2
2
,小数部分是
5
-2
5
-2

(2)1+
2
的整数部分是
2
2
,小数部分是
2
-1
2
-1

(3)若设2+
3
整数部分是x,小数部分是y,求x-
3
y的值.

查看答案和解析>>

同步练习册答案