精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ACB=90°,点D在BC边上,且BD=BC,过点B作CD的垂线交AC于点O,以O为圆心,OC为半径画圆.
(1)求证:AB是⊙O的切线;
(2)若AB=10,AD=2,求⊙O的半径.

【答案】
(1)证明:连接OD

∵BD=BC,BO⊥CD,

∴∠DBO=∠CBO.

∵BD=BC,∠DBO=∠CBO,OB=OB

∴△DBO≌△CBO,

∴OD=OC,∠ODB=∠OCB=90°,

∴AB是⊙O的切线.


(2)解:∵AB=10,AD=2,∴BC=BD=AB﹣AD=8,

在Rt△ABC中,AC= = =6,

设⊙O的半径为r,则OD=OC=r,AO=AC﹣OC=6﹣r,

在Rt△ADO中,∵AD2+OD2=AO2

∴22+r 2=(6﹣r)2

解之得r= ,即⊙O的半径为


【解析】(1)连接OD,证明△DBO≌△CBO,即可证得∠ODB=90°,从而证得AB是切线;(2)Rt△ABC中利用勾股定理求得AC的长,然后在直角△ADO中根据勾股定理列方程求得半径的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,已知⊙O是△ABC的外接圆,AB为⊙O的直径,AC=6cm,BC=8cm.
(1)求⊙O的半径;
(2)请用尺规作图作出点P,使得点P在优弧CAB上时,△PBC的面积最大,请保留作图痕迹,并求出△PBC面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,分别以点A,B为圆心,大于 AB长为半径作弧,两弧分别交于M,N两点,过M,N两点的直线交AC于点E,若AC=8,BC=6,则AE的长为(
A.2
B.3
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y1=ax+b的图象分别与x,y轴交于点B,A,与反比例函数y2= 的图象交于点C,D,CE⊥x轴于点E,tan∠ABO= ,OB=4,OE=2.
(1)求一次函数与反比例函数的解析式;
(2)根据图象直接写出当x<0且y1<y2时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y,其中x= ,y=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若BD= ﹣1,则∠ACD=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC内接于⊙O,AD为边上的高,将△ADC沿直线AC翻折得到△AEC,延长EA交⊙O于点P,连接FC,交AB于N.
(1)求证:∠BAC=∠ABC+∠ACF;
(2)求证:EF=DB;
(3)若AD=5,CD=10,CB∥AF,求点F到AB的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果点P(x﹣4,2x+6)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动 秒时,动点P从点A出发以相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).
(1)用含t的代数式表示OP,OQ;
(2)当t=1时,如图1,

将沿△OPQ沿PQ翻折,点O恰好落在CB边上的点D处,求点D的坐标;
(3)连接AC,将△OPQ沿PQ翻折,得到△EPQ,如图2.

问:PQ与AC能否平行?PE与AC能否垂直?若能,求出相应的t值;若不能,说明理由.

查看答案和解析>>

同步练习册答案