精英家教网 > 初中数学 > 题目详情
直线y=-x-3经过点C(1,m),并与坐标轴交于A、B两点,过B、C两点的抛物线y=x2+bx+c与x轴的负半轴交于D点,
(1)求点C的坐标及抛物线的解析式;
(2)抛物线y=x2+bx+c的对称轴为直线MN,直线MN与x轴相交于点F,直线MN上有一动点P,过P作直线PE⊥AB,垂足为E,直线PE与x轴相交于点H
①当P点在直线MN上移动时,是否存在这样的P点,使以A、P、H为顶点的三角形与△FBC相似?若存在,请求出P点的坐标;若不存在,请说明理由;
②若⊙I始终过A、P、E三点,当P点在MN上运动时,圆心I在
C
C
上运动.(先作选择,再说明理由) 
A.一个圆   B.一个反比例函数图象  C.一条直线  D.一条抛物线
分析:(1)首先由直线AC的解析式求出点B、C两点的坐标,再由待定系数法确定抛物线的解析式.
(2)①点A、C的坐标易知,那么容易判断出∠ACF=45°,这也是方便解题的一个重要条件;从图中不难看出∠AHP、∠ACF是同角(或等角)的余角,那么必有∠AHP=∠FCB=45°,首先用未知数设出PF的长,进而由∠AHP的度数求出PH、AH的长,若△AHP、△FCB相似,通过得到的比例线段列式求出这个未知数的值,由此确定点P的坐标(注意要分点P在x轴上方和下方两种情况讨论);
②在Rt△APE中,它的外心I始终是AP的中点,若取AF的中点为Q,那么IQ为△APH的中位线,换句话说无论点P如何运动,IQ始终与PH平行,即点I始终在一条平行于y轴的直线上,可根据这个思路来解答题目.
解答:解:(1)由直线y=-x-3知:A(-3,0)、B(0,-3);
当x=1时,y=-x-3=-4,即 C(1,-4).
将B(0,-3)、C(1,-4)代入y=x2+bx+c中,得:
c=-3
1+b+c=-4
,解得
b=-2
c=-3

∴抛物线的解析式:y=x2-2x-3.

(2)①由点A(-3,0)、C(1,-4)得:AF=CF=4,即△AFC是等腰直角三角形,∠FCB=45°;
1、当点P在x轴下方时,∠AHP=∠FCB=90°-∠HAC=45°;
在Rt△FPH中,设FH=FP=x,则PH=
2
x,AH=AF+FH=4+x;
由B(0,-3)、C(1,-4)知:BC=
2
,CF=4;
若△APH∽△HBC,那么
PH
BC
=
AH
CF
,则有:
2
x
2
=
4+x
4

解得:x=
4
3
,即 P(1,-
4
3
);
2、当点P在x轴上方时,如右图;
∠AHP=∠FCB=90°-∠EAH=90°-∠FAC=45°;
设FP=x,则 FH=FP=x,AH=FH-AF=x-4,PH=
2
x;
同1可得:
PH
CF
=
AH
BC
,有:
2
x
4
=
x-4
2

解得:x=8,即 P(1,8);
综上,点P的坐标为(1,-
4
3
)或(1,8).
②Rt△APE的外接圆圆心为斜边AP的中点I,取AF的中点Q,那么IQ为△AFP的中位线,
∴IQ∥MN,即IQ∥y轴;
∵点Q(-1,0),∴无论点P如何运动,点I始终在直线x=-1上.
故选C.
点评:此题主要考查了函数解析式的确定、相似三角形的判定和性质以及三角形的外接圆等相关知识点;(2)①较难,能够应用含有特殊度数的∠FCB是解答题目的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、【附加题】已知二次函数y=x2+2(m+1)x-m+1.
(1)随着m的变化,该二次函数图象的顶点P是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.
(2)如果直线y=x+1经过二次函数y=x2+2(m+1)x-m+1图象的顶点P,求此时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•盘锦)如图,在平面直角坐标系中,直线l经过原点O,且与x轴正半轴的夹角为30°,点M在x轴上,⊙M半径为2,⊙M与直线l相交于A,B两点,若△ABM为等腰直角三角形,则点M的坐标为
(2
2
,0)或(-2
2
,0)
(2
2
,0)或(-2
2
,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•自贡)已知直线l经过点A(1,0)且与直线y=x垂直,则直线l的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC于点N、E、M.
(1)当直线l经过点C时(如图2),证明:BN=CD;
(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;
(3)请直接写出BN、CE、CD之间的等量关系.

查看答案和解析>>

同步练习册答案