精英家教网 > 初中数学 > 题目详情
下列关于x的一元二次方程中,有两个不相等的实数根的方程是(  )
分析:先把各方程化为一般式,然后计算各方程的判别式,再根据判别式的意义判断方程根的情况.
解答:解:A、△=02-4×1×1=-4<0,方程没有实数根,所以A选项错误;
B、△=(-6)2-4×9×1=0,方程有两个相等的实数根,所以B选项正确;
C、2x2+x+1=0,△=12-4×2×1=-7<0,方程没有实数根,所以C选项错误;
D、x2-2x-2=0,△=(-2)2-4×1×(-2)=12>0,方程有两个不相等的实数根,所以D选项错误.
故选B.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-
b
a
x1x2=
c
a
.我们把它们称为根与系数关系定理.
如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

请你参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点为A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为等腰直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,b2-4ac=
 

(3)设抛物线y=x2+kx+1与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=60°?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1≠x2,有下列结论:
①x1=2,x2=3;②m>-
1
4
;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).
其中,正确结论的个数是(  )

查看答案和解析>>

科目:初中数学 来源:新教材新学案数学九年级上册 题型:044

将下列关于x的一元二次方程化成一般形式,再写出它的二次项系数、一次项系数及常数项.

(1)2x(x-1)=3(x+5)-4;

(2)(ax-b)2-(a-bx)2=a2+b2(a≠±b).

查看答案和解析>>

科目:初中数学 来源: 题型:

把下列关于x的一元二次方程化成一般形式,再写出它的二次项系数、一次项系数和常数项.

 (x+1)(x-1)= 3;                         

查看答案和解析>>

科目:初中数学 来源: 题型:

把下列关于x的一元二次方程化成一般形式,再写出它的二次项系数、一次项系数和常数项.

 (x-5)2+(x-3)2=16.

查看答案和解析>>

同步练习册答案