精英家教网 > 初中数学 > 题目详情

已知∠AOB=90°,∠COD=30°.
(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是______;
如图2,若OB恰好平分∠COD,则∠AOC的度数是______;
作业宝
作业宝
(2)当∠COD从图1的位置开始,绕点O逆时针方向旋转180°,作射线OM平分∠AOC,射线ON平分∠BOD,在旋转过程中,发现∠MON的度数保持不变.
①∠MON的度数是______;
②请选择下列图3、图4、图5、图6四种情况中的两种予以证明.

解:(1)∵点O、A、C在同一条直线上
∴∠BOD=∠AOB-∠COD=90°-30°=60°
∵OB平分∠COD
=
∴∠AOC=∠AOB-∠COB=90°-15°=75°

(2)①∠MON=60°
②图4证明:∵OM平分∠AOC,ON平分∠BOD

∵∠AOD=∠AOB+∠COD-∠BOC
=∠AOC+∠BOC+∠BOD
∴∠AOC+∠BOD+2∠BOC=∠AOB+∠COD
=90°+30°=120°
∴∠MON=∠MOC+∠COB+∠BON
==
=60°
图5证明:∵OM平分∠AOC,ON平分∠BOD

∵∠AOD=∠AOB+∠COD+∠BOC
=∠AOC+∠BOD-∠BOC
∴∠AOC+∠BOD-2∠BOC=∠AOB+∠COD
=90°+30°=120°
∴∠MON=∠MOC+∠CON
=∠MOC+∠BON-∠BOC
=
=
=60°.
分析:(1)根据角的计算法则即可求出∠BOD的度数,根据角的平分线定义可得,根据角的计算可求出∠AOC的度数.
(2),再根据角的计算进行转换即可求出∠MON的度数.
点评:本题考查了角平分线定义和角的计算,关键是求出∠AOC,∠BOD和∠BOC的关系,然后计算即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(-3精英家教网,1).
(1)求点B的坐标;
(2)求过A,O,B三点的抛物线的解析式;
(3)设点B关于抛物线的对称轴l的对称点为B1,求△AB1B的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知∠AOB=90°,OM是∠AOB的平分线,将一个直角RPS的直角顶点P在射线OM上移动,精英家教网点P不与点O重合.
(1)如图,当直角RPS的两边分别与射线OA、OB交于点C、D时,请判断PC与PD的数量关系,并证明你的结论;
(2)如图,在(1)的条件下,设CD与OP的交点为点G,且PG=
3
2
PD
,求
GD
OD
的值;
(3)若直角RPS的一边与射线OB交于点D,另一边与直线OA、直线OB分别交于点C、E,且以P、D、E为顶点的三角形与△OCD相似,请画出示意图;当OD=1时,直接写出OP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、已知∠AOB=90°,OC为一射线,OM,ON分别平分∠BOC和∠AOC,求∠MON的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠AOB=90°,∠AOC=60°,OD平分∠BOC,OE平分∠AOC.
(1)求∠DOE的度数.
(2)如果原题中∠AOC=60°改为∠AOC是锐角,能否求出∠DOE?若能求出来;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,求∠MON的度数;
(2)如果(1)中∠AOB=α,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;
(3)从(1)、(2)的结果中能得出什么结论?

查看答案和解析>>

同步练习册答案